Loading…

Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes

Vapor phase infiltration (VPI) is a post-polymerization modification method for infusing inorganic clusters into a polymer to create organic-inorganic hybrid materials with properties that are unique from the parent polymer. The properties of these hybrid materials can vary with the amount of VPI ge...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2022-10, Vol.290, p.126577, Article 126577
Main Authors: Jean, Benjamin C., Ren, Yi, McGuinness, Emily K., Lively, Ryan P., Losego, Mark D.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863
cites cdi_FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863
container_end_page
container_issue
container_start_page 126577
container_title Materials chemistry and physics
container_volume 290
creator Jean, Benjamin C.
Ren, Yi
McGuinness, Emily K.
Lively, Ryan P.
Losego, Mark D.
description Vapor phase infiltration (VPI) is a post-polymerization modification method for infusing inorganic clusters into a polymer to create organic-inorganic hybrid materials with properties that are unique from the parent polymer. The properties of these hybrid materials can vary with the amount of VPI generated inorganic loading. However, the relationship between VPI processing conditions and inorganic loading is still not fully understood. In this paper, the effects of VPI dose pressure and exposure time on inorganic loading are explored using the technologically relevant membrane material known as “polymer of intrinsic microporosity 1” (PIM-1). At sufficiently low dose pressures and infiltration times (i.e., before saturation), inorganic loading can be controlled with both vapor pressure and exposure time. However, inorganic loading appears to saturate for this system when the polymer's functional groups become fully populated with bound VPI precursors. These experimental results can be understood with the use of a recently developed reaction-diffusion model for VPI. Critical to applying this model to these post-deposition measurements is re-normalizing the mass loading to the total number of functional groups in the polymer. •Increasing vapor pressure increases vapor phase infiltration kinetics.•Changing vapor pressure does not change the saturation point for inorganic loading.•These observations are explained with a reaction-diffusion model.•Demonstrates how to apply reaction diffusion model to ex situ measurements.
doi_str_mv 10.1016/j.matchemphys.2022.126577
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchemphys_2022_126577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058422008835</els_id><sourcerecordid>S0254058422008835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EEqVwB3OABNv5sbNEVYFKRbCAteXa48ZVEkd2WpEDcG9SChJLVqM3mvc070PolpKUElre7dJWDbqGtq_HmDLCWEpZWXB-hmZU8CrJMsrO0YywIk9IIfJLdBXjjhDKKc1m6HNpLeghYm_xEFwLQz02qtm3rtu3-KB6H3AfIMZ9AKw6g-Gj999imI6x77DrfNiqzmnceGVct502v8ZaRZikdc0Q1AAGv66eE4p734wtBNxCuwmqg3iNLqxqItz8zDl6f1i-LZ6S9cvjanG_TnTG2ZCUFamstpYBoUqbimuuhVGbClhhuSkLwQTkZZ5Rk3Oa51ywTGhjcsE5A1Fmc1SdcnXwMQawsp86qzBKSuSRp9zJPzzlkac88Zy8i5MXpgcPDoKM2kGnwbgwEZTGu3-kfAF4yoha</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes</title><source>ScienceDirect Journals</source><creator>Jean, Benjamin C. ; Ren, Yi ; McGuinness, Emily K. ; Lively, Ryan P. ; Losego, Mark D.</creator><creatorcontrib>Jean, Benjamin C. ; Ren, Yi ; McGuinness, Emily K. ; Lively, Ryan P. ; Losego, Mark D.</creatorcontrib><description>Vapor phase infiltration (VPI) is a post-polymerization modification method for infusing inorganic clusters into a polymer to create organic-inorganic hybrid materials with properties that are unique from the parent polymer. The properties of these hybrid materials can vary with the amount of VPI generated inorganic loading. However, the relationship between VPI processing conditions and inorganic loading is still not fully understood. In this paper, the effects of VPI dose pressure and exposure time on inorganic loading are explored using the technologically relevant membrane material known as “polymer of intrinsic microporosity 1” (PIM-1). At sufficiently low dose pressures and infiltration times (i.e., before saturation), inorganic loading can be controlled with both vapor pressure and exposure time. However, inorganic loading appears to saturate for this system when the polymer's functional groups become fully populated with bound VPI precursors. These experimental results can be understood with the use of a recently developed reaction-diffusion model for VPI. Critical to applying this model to these post-deposition measurements is re-normalizing the mass loading to the total number of functional groups in the polymer. •Increasing vapor pressure increases vapor phase infiltration kinetics.•Changing vapor pressure does not change the saturation point for inorganic loading.•These observations are explained with a reaction-diffusion model.•Demonstrates how to apply reaction diffusion model to ex situ measurements.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2022.126577</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Materials chemistry and physics, 2022-10, Vol.290, p.126577, Article 126577</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863</citedby><cites>FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863</cites><orcidid>0000-0002-2944-6829 ; 0000-0002-9810-9834 ; 0000-0002-1135-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jean, Benjamin C.</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>McGuinness, Emily K.</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Losego, Mark D.</creatorcontrib><title>Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes</title><title>Materials chemistry and physics</title><description>Vapor phase infiltration (VPI) is a post-polymerization modification method for infusing inorganic clusters into a polymer to create organic-inorganic hybrid materials with properties that are unique from the parent polymer. The properties of these hybrid materials can vary with the amount of VPI generated inorganic loading. However, the relationship between VPI processing conditions and inorganic loading is still not fully understood. In this paper, the effects of VPI dose pressure and exposure time on inorganic loading are explored using the technologically relevant membrane material known as “polymer of intrinsic microporosity 1” (PIM-1). At sufficiently low dose pressures and infiltration times (i.e., before saturation), inorganic loading can be controlled with both vapor pressure and exposure time. However, inorganic loading appears to saturate for this system when the polymer's functional groups become fully populated with bound VPI precursors. These experimental results can be understood with the use of a recently developed reaction-diffusion model for VPI. Critical to applying this model to these post-deposition measurements is re-normalizing the mass loading to the total number of functional groups in the polymer. •Increasing vapor pressure increases vapor phase infiltration kinetics.•Changing vapor pressure does not change the saturation point for inorganic loading.•These observations are explained with a reaction-diffusion model.•Demonstrates how to apply reaction diffusion model to ex situ measurements.</description><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhS0EEqVwB3OABNv5sbNEVYFKRbCAteXa48ZVEkd2WpEDcG9SChJLVqM3mvc070PolpKUElre7dJWDbqGtq_HmDLCWEpZWXB-hmZU8CrJMsrO0YywIk9IIfJLdBXjjhDKKc1m6HNpLeghYm_xEFwLQz02qtm3rtu3-KB6H3AfIMZ9AKw6g-Gj999imI6x77DrfNiqzmnceGVct502v8ZaRZikdc0Q1AAGv66eE4p734wtBNxCuwmqg3iNLqxqItz8zDl6f1i-LZ6S9cvjanG_TnTG2ZCUFamstpYBoUqbimuuhVGbClhhuSkLwQTkZZ5Rk3Oa51ywTGhjcsE5A1Fmc1SdcnXwMQawsp86qzBKSuSRp9zJPzzlkac88Zy8i5MXpgcPDoKM2kGnwbgwEZTGu3-kfAF4yoha</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Jean, Benjamin C.</creator><creator>Ren, Yi</creator><creator>McGuinness, Emily K.</creator><creator>Lively, Ryan P.</creator><creator>Losego, Mark D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2944-6829</orcidid><orcidid>https://orcid.org/0000-0002-9810-9834</orcidid><orcidid>https://orcid.org/0000-0002-1135-2082</orcidid></search><sort><creationdate>20221015</creationdate><title>Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes</title><author>Jean, Benjamin C. ; Ren, Yi ; McGuinness, Emily K. ; Lively, Ryan P. ; Losego, Mark D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jean, Benjamin C.</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>McGuinness, Emily K.</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Losego, Mark D.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean, Benjamin C.</au><au>Ren, Yi</au><au>McGuinness, Emily K.</au><au>Lively, Ryan P.</au><au>Losego, Mark D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>290</volume><spage>126577</spage><pages>126577-</pages><artnum>126577</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Vapor phase infiltration (VPI) is a post-polymerization modification method for infusing inorganic clusters into a polymer to create organic-inorganic hybrid materials with properties that are unique from the parent polymer. The properties of these hybrid materials can vary with the amount of VPI generated inorganic loading. However, the relationship between VPI processing conditions and inorganic loading is still not fully understood. In this paper, the effects of VPI dose pressure and exposure time on inorganic loading are explored using the technologically relevant membrane material known as “polymer of intrinsic microporosity 1” (PIM-1). At sufficiently low dose pressures and infiltration times (i.e., before saturation), inorganic loading can be controlled with both vapor pressure and exposure time. However, inorganic loading appears to saturate for this system when the polymer's functional groups become fully populated with bound VPI precursors. These experimental results can be understood with the use of a recently developed reaction-diffusion model for VPI. Critical to applying this model to these post-deposition measurements is re-normalizing the mass loading to the total number of functional groups in the polymer. •Increasing vapor pressure increases vapor phase infiltration kinetics.•Changing vapor pressure does not change the saturation point for inorganic loading.•These observations are explained with a reaction-diffusion model.•Demonstrates how to apply reaction diffusion model to ex situ measurements.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2022.126577</doi><orcidid>https://orcid.org/0000-0002-2944-6829</orcidid><orcidid>https://orcid.org/0000-0002-9810-9834</orcidid><orcidid>https://orcid.org/0000-0002-1135-2082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2022-10, Vol.290, p.126577, Article 126577
issn 0254-0584
1879-3312
language eng
recordid cdi_crossref_primary_10_1016_j_matchemphys_2022_126577
source ScienceDirect Journals
title Effects of trimethylaluminum vapor pressure and exposure time on inorganic loading in vapor phase infiltrated PIM-1 polymer membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20trimethylaluminum%20vapor%20pressure%20and%20exposure%20time%20on%20inorganic%20loading%20in%20vapor%20phase%20infiltrated%20PIM-1%20polymer%20membranes&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Jean,%20Benjamin%20C.&rft.date=2022-10-15&rft.volume=290&rft.spage=126577&rft.pages=126577-&rft.artnum=126577&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2022.126577&rft_dat=%3Celsevier_cross%3ES0254058422008835%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-6909fcff2e01acd97c7c8dab9e25f7d65828e46431d4714478238cdd48772e863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true