Loading…

Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection

This work reports the development of ultrasensitive miniaturized electrochemical device for heavy metal sensing. A laser engraver based patterning of fluorine-doped tin oxide (FTO) sheet was done to draw an etched pattern forming a miniaturized 3-electrode configuration. A layer of Ag/AgCl ink serve...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2024-05, Vol.318, p.129255, Article 129255
Main Authors: Dash, Smruti Ranjan, Bag, Subhendu Sekhar, Golder, Animes Kumar, Ivaturi, Aruna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c265t-aad2e2de861e2f73176cc5413246259b97f5892153a3aff91eefc875d2e8cc7e3
container_end_page
container_issue
container_start_page 129255
container_title Materials chemistry and physics
container_volume 318
creator Dash, Smruti Ranjan
Bag, Subhendu Sekhar
Golder, Animes Kumar
Ivaturi, Aruna
description This work reports the development of ultrasensitive miniaturized electrochemical device for heavy metal sensing. A laser engraver based patterning of fluorine-doped tin oxide (FTO) sheet was done to draw an etched pattern forming a miniaturized 3-electrode configuration. A layer of Ag/AgCl ink served as pseudo-reference electrode. The sensing electrode was coated using low-cost Cu nanorods (CuNRs) grown radially along the {110} surface with aspect ratio of 8.0 and Cu@Ag core-shell nanorods (Cu@AgNRs) formed via galvanic displacement for simultaneous electrocatalytic detection of heavy metal ions (Pb(II), Cd(II), Hg(II), and Zn(II)) present in water. The electroactive surface area of the prepared devices is 0.026, 0.093 and 0.125 cm2 for bare FTO, CuNRs/FTO and Cu@AgNRs/FTO, respectively. Bimetal Cu@AgNRs/FTO sensor exhibited the lowest limit of detection of 1, 2, 5 and 6 nM, respectively, detecting Cd(II), Pb(II), Zn(II), and Hg(II) ions, and it was 2, 2, 3 and 4 nM, respectively, for simultaneous detection of Zn(II), Pb(II), Cd(II) and Hg(II). The Cu@AgNRs/FTO based device showed distinct peak-to-peak separation by 0.40, 0.25 and 0.51 V for Zn(II)-Cd(II), Cd(II)-Pb(II) and Pb(II)-Hg(II), respectively. This device was highly sensitive (583.6–1261.8 μA․μM−1․cm−2) for heavy metal detection over CuNRs/FTO (15.9–107.4 μA․μM−1․cm−2). The Cu@AgNRs/FTO based sensors demonstrated good reproducibility (relative standard deviation ≤ 5%) with recovery (>90%) in the case of all target heavy metals simultaneously present in environmental water samples. Hence, the Cu nanorods based miniaturized sensing platforms developed in the present study for simultaneous heavy metal detection are potential low-cost alternatives providing a repeatability of upto 4 cycles unlike the commercial screen-printed electrodes. [Display omitted] •Highly structured CuNRs and Cu@AgNRs formation using ascorbic acid.•Miniaturized 3-electrode device fabrication for heavy metal (HMs) sensing.•Cu@AgNRs/FTO-based device determines nM level HMs ions.•Device reusable upto 4 cycles for HMs sensing in river and domestic water.
doi_str_mv 10.1016/j.matchemphys.2024.129255
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchemphys_2024_129255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058424003808</els_id><sourcerecordid>S0254058424003808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-aad2e2de861e2f73176cc5413246259b97f5892153a3aff91eefc875d2e8cc7e3</originalsourceid><addsrcrecordid>eNqNkMtuwyAQRVm0UtO0_0A_wC5g48eukdWXFKmbZo0IDA2RDRGQSPn7YqWLLrO6i5l7NHMQeqKkpIQ2z_tykkntYDrszrFkhNUlZT3j_AYtCON1QXhX36H7GPeE0JbSaoHGzZiCjOCiTfYEGEZQKfiZYpUc8TzxIeJt3tHYOzwcsXQ6x8vqBzvpfPA6YuMDjnY6jkk68MeIdyBPZzxBygwNKUOtdw_o1sgxwuNfLtHm7fV7-CjWX--fw2pdKNbwVEipGTANXUOBmbaibaMUr2nF6obxftu3hnc9o7ySlTSmpwBGdS3PrU6pFqol6i9cFXyMAYw4BDvJcBaUiFmV2It_qsSsSlxU5e5w6UI-8GQhiKgsOAXahvyF0N5eQfkFxwp9mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection</title><source>ScienceDirect Freedom Collection</source><creator>Dash, Smruti Ranjan ; Bag, Subhendu Sekhar ; Golder, Animes Kumar ; Ivaturi, Aruna</creator><creatorcontrib>Dash, Smruti Ranjan ; Bag, Subhendu Sekhar ; Golder, Animes Kumar ; Ivaturi, Aruna</creatorcontrib><description>This work reports the development of ultrasensitive miniaturized electrochemical device for heavy metal sensing. A laser engraver based patterning of fluorine-doped tin oxide (FTO) sheet was done to draw an etched pattern forming a miniaturized 3-electrode configuration. A layer of Ag/AgCl ink served as pseudo-reference electrode. The sensing electrode was coated using low-cost Cu nanorods (CuNRs) grown radially along the {110} surface with aspect ratio of 8.0 and Cu@Ag core-shell nanorods (Cu@AgNRs) formed via galvanic displacement for simultaneous electrocatalytic detection of heavy metal ions (Pb(II), Cd(II), Hg(II), and Zn(II)) present in water. The electroactive surface area of the prepared devices is 0.026, 0.093 and 0.125 cm2 for bare FTO, CuNRs/FTO and Cu@AgNRs/FTO, respectively. Bimetal Cu@AgNRs/FTO sensor exhibited the lowest limit of detection of 1, 2, 5 and 6 nM, respectively, detecting Cd(II), Pb(II), Zn(II), and Hg(II) ions, and it was 2, 2, 3 and 4 nM, respectively, for simultaneous detection of Zn(II), Pb(II), Cd(II) and Hg(II). The Cu@AgNRs/FTO based device showed distinct peak-to-peak separation by 0.40, 0.25 and 0.51 V for Zn(II)-Cd(II), Cd(II)-Pb(II) and Pb(II)-Hg(II), respectively. This device was highly sensitive (583.6–1261.8 μA․μM−1․cm−2) for heavy metal detection over CuNRs/FTO (15.9–107.4 μA․μM−1․cm−2). The Cu@AgNRs/FTO based sensors demonstrated good reproducibility (relative standard deviation ≤ 5%) with recovery (&gt;90%) in the case of all target heavy metals simultaneously present in environmental water samples. Hence, the Cu nanorods based miniaturized sensing platforms developed in the present study for simultaneous heavy metal detection are potential low-cost alternatives providing a repeatability of upto 4 cycles unlike the commercial screen-printed electrodes. [Display omitted] •Highly structured CuNRs and Cu@AgNRs formation using ascorbic acid.•Miniaturized 3-electrode device fabrication for heavy metal (HMs) sensing.•Cu@AgNRs/FTO-based device determines nM level HMs ions.•Device reusable upto 4 cycles for HMs sensing in river and domestic water.</description><identifier>ISSN: 0254-0584</identifier><identifier>DOI: 10.1016/j.matchemphys.2024.129255</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electrochemical sensing platform ; FTO substrates ; Square wave anode stripping voltammetry ; Toxic heavy metals</subject><ispartof>Materials chemistry and physics, 2024-05, Vol.318, p.129255, Article 129255</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-aad2e2de861e2f73176cc5413246259b97f5892153a3aff91eefc875d2e8cc7e3</cites><orcidid>0000-0002-7194-9585 ; 0000-0001-8144-5316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dash, Smruti Ranjan</creatorcontrib><creatorcontrib>Bag, Subhendu Sekhar</creatorcontrib><creatorcontrib>Golder, Animes Kumar</creatorcontrib><creatorcontrib>Ivaturi, Aruna</creatorcontrib><title>Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection</title><title>Materials chemistry and physics</title><description>This work reports the development of ultrasensitive miniaturized electrochemical device for heavy metal sensing. A laser engraver based patterning of fluorine-doped tin oxide (FTO) sheet was done to draw an etched pattern forming a miniaturized 3-electrode configuration. A layer of Ag/AgCl ink served as pseudo-reference electrode. The sensing electrode was coated using low-cost Cu nanorods (CuNRs) grown radially along the {110} surface with aspect ratio of 8.0 and Cu@Ag core-shell nanorods (Cu@AgNRs) formed via galvanic displacement for simultaneous electrocatalytic detection of heavy metal ions (Pb(II), Cd(II), Hg(II), and Zn(II)) present in water. The electroactive surface area of the prepared devices is 0.026, 0.093 and 0.125 cm2 for bare FTO, CuNRs/FTO and Cu@AgNRs/FTO, respectively. Bimetal Cu@AgNRs/FTO sensor exhibited the lowest limit of detection of 1, 2, 5 and 6 nM, respectively, detecting Cd(II), Pb(II), Zn(II), and Hg(II) ions, and it was 2, 2, 3 and 4 nM, respectively, for simultaneous detection of Zn(II), Pb(II), Cd(II) and Hg(II). The Cu@AgNRs/FTO based device showed distinct peak-to-peak separation by 0.40, 0.25 and 0.51 V for Zn(II)-Cd(II), Cd(II)-Pb(II) and Pb(II)-Hg(II), respectively. This device was highly sensitive (583.6–1261.8 μA․μM−1․cm−2) for heavy metal detection over CuNRs/FTO (15.9–107.4 μA․μM−1․cm−2). The Cu@AgNRs/FTO based sensors demonstrated good reproducibility (relative standard deviation ≤ 5%) with recovery (&gt;90%) in the case of all target heavy metals simultaneously present in environmental water samples. Hence, the Cu nanorods based miniaturized sensing platforms developed in the present study for simultaneous heavy metal detection are potential low-cost alternatives providing a repeatability of upto 4 cycles unlike the commercial screen-printed electrodes. [Display omitted] •Highly structured CuNRs and Cu@AgNRs formation using ascorbic acid.•Miniaturized 3-electrode device fabrication for heavy metal (HMs) sensing.•Cu@AgNRs/FTO-based device determines nM level HMs ions.•Device reusable upto 4 cycles for HMs sensing in river and domestic water.</description><subject>Electrochemical sensing platform</subject><subject>FTO substrates</subject><subject>Square wave anode stripping voltammetry</subject><subject>Toxic heavy metals</subject><issn>0254-0584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMtuwyAQRVm0UtO0_0A_wC5g48eukdWXFKmbZo0IDA2RDRGQSPn7YqWLLrO6i5l7NHMQeqKkpIQ2z_tykkntYDrszrFkhNUlZT3j_AYtCON1QXhX36H7GPeE0JbSaoHGzZiCjOCiTfYEGEZQKfiZYpUc8TzxIeJt3tHYOzwcsXQ6x8vqBzvpfPA6YuMDjnY6jkk68MeIdyBPZzxBygwNKUOtdw_o1sgxwuNfLtHm7fV7-CjWX--fw2pdKNbwVEipGTANXUOBmbaibaMUr2nF6obxftu3hnc9o7ySlTSmpwBGdS3PrU6pFqol6i9cFXyMAYw4BDvJcBaUiFmV2It_qsSsSlxU5e5w6UI-8GQhiKgsOAXahvyF0N5eQfkFxwp9mw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Dash, Smruti Ranjan</creator><creator>Bag, Subhendu Sekhar</creator><creator>Golder, Animes Kumar</creator><creator>Ivaturi, Aruna</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7194-9585</orcidid><orcidid>https://orcid.org/0000-0001-8144-5316</orcidid></search><sort><creationdate>20240501</creationdate><title>Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection</title><author>Dash, Smruti Ranjan ; Bag, Subhendu Sekhar ; Golder, Animes Kumar ; Ivaturi, Aruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-aad2e2de861e2f73176cc5413246259b97f5892153a3aff91eefc875d2e8cc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrochemical sensing platform</topic><topic>FTO substrates</topic><topic>Square wave anode stripping voltammetry</topic><topic>Toxic heavy metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Smruti Ranjan</creatorcontrib><creatorcontrib>Bag, Subhendu Sekhar</creatorcontrib><creatorcontrib>Golder, Animes Kumar</creatorcontrib><creatorcontrib>Ivaturi, Aruna</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Smruti Ranjan</au><au>Bag, Subhendu Sekhar</au><au>Golder, Animes Kumar</au><au>Ivaturi, Aruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection</atitle><jtitle>Materials chemistry and physics</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>318</volume><spage>129255</spage><pages>129255-</pages><artnum>129255</artnum><issn>0254-0584</issn><abstract>This work reports the development of ultrasensitive miniaturized electrochemical device for heavy metal sensing. A laser engraver based patterning of fluorine-doped tin oxide (FTO) sheet was done to draw an etched pattern forming a miniaturized 3-electrode configuration. A layer of Ag/AgCl ink served as pseudo-reference electrode. The sensing electrode was coated using low-cost Cu nanorods (CuNRs) grown radially along the {110} surface with aspect ratio of 8.0 and Cu@Ag core-shell nanorods (Cu@AgNRs) formed via galvanic displacement for simultaneous electrocatalytic detection of heavy metal ions (Pb(II), Cd(II), Hg(II), and Zn(II)) present in water. The electroactive surface area of the prepared devices is 0.026, 0.093 and 0.125 cm2 for bare FTO, CuNRs/FTO and Cu@AgNRs/FTO, respectively. Bimetal Cu@AgNRs/FTO sensor exhibited the lowest limit of detection of 1, 2, 5 and 6 nM, respectively, detecting Cd(II), Pb(II), Zn(II), and Hg(II) ions, and it was 2, 2, 3 and 4 nM, respectively, for simultaneous detection of Zn(II), Pb(II), Cd(II) and Hg(II). The Cu@AgNRs/FTO based device showed distinct peak-to-peak separation by 0.40, 0.25 and 0.51 V for Zn(II)-Cd(II), Cd(II)-Pb(II) and Pb(II)-Hg(II), respectively. This device was highly sensitive (583.6–1261.8 μA․μM−1․cm−2) for heavy metal detection over CuNRs/FTO (15.9–107.4 μA․μM−1․cm−2). The Cu@AgNRs/FTO based sensors demonstrated good reproducibility (relative standard deviation ≤ 5%) with recovery (&gt;90%) in the case of all target heavy metals simultaneously present in environmental water samples. Hence, the Cu nanorods based miniaturized sensing platforms developed in the present study for simultaneous heavy metal detection are potential low-cost alternatives providing a repeatability of upto 4 cycles unlike the commercial screen-printed electrodes. [Display omitted] •Highly structured CuNRs and Cu@AgNRs formation using ascorbic acid.•Miniaturized 3-electrode device fabrication for heavy metal (HMs) sensing.•Cu@AgNRs/FTO-based device determines nM level HMs ions.•Device reusable upto 4 cycles for HMs sensing in river and domestic water.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2024.129255</doi><orcidid>https://orcid.org/0000-0002-7194-9585</orcidid><orcidid>https://orcid.org/0000-0001-8144-5316</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2024-05, Vol.318, p.129255, Article 129255
issn 0254-0584
language eng
recordid cdi_crossref_primary_10_1016_j_matchemphys_2024_129255
source ScienceDirect Freedom Collection
subjects Electrochemical sensing platform
FTO substrates
Square wave anode stripping voltammetry
Toxic heavy metals
title Ultrasensitive electrochemical sensors based on Cu and Cu@Ag nanorods for simultaneous heavy metal detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20electrochemical%20sensors%20based%20on%20Cu%20and%20Cu@Ag%20nanorods%20for%20simultaneous%20heavy%20metal%20detection&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Dash,%20Smruti%20Ranjan&rft.date=2024-05-01&rft.volume=318&rft.spage=129255&rft.pages=129255-&rft.artnum=129255&rft.issn=0254-0584&rft_id=info:doi/10.1016/j.matchemphys.2024.129255&rft_dat=%3Celsevier_cross%3ES0254058424003808%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-aad2e2de861e2f73176cc5413246259b97f5892153a3aff91eefc875d2e8cc7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true