Loading…

Achieving the hardness-ductility balance of laser quenching process via thermal cycling

The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched m...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2024-08, Vol.322, p.129516, Article 129516
Main Authors: Luo, Guoyun, Li, Yuchao, Cheng, Shaojie, Li, Hui, Wang, Dianlong, Peng, Jun, Ma, Mingming, Deng, Xionghao, Zhao, Zisong, Cheng, Manping, Li, Simeng, Song, Lijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3
container_end_page
container_issue
container_start_page 129516
container_title Materials chemistry and physics
container_volume 322
creator Luo, Guoyun
Li, Yuchao
Cheng, Shaojie
Li, Hui
Wang, Dianlong
Peng, Jun
Ma, Mingming
Deng, Xionghao
Zhao, Zisong
Cheng, Manping
Li, Simeng
Song, Lijun
description The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle. [Display omitted] •Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.
doi_str_mv 10.1016/j.matchemphys.2024.129516
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchemphys_2024_129516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058424006412</els_id><sourcerecordid>S0254058424006412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nDTLquIlVWIDYmk59pi4yqPYaaX8Pa7KgiWrWdw5VzOHkHtgOTAoH3Z5ryfTYr9v55hzxosceC2hvCALWFV1JgTwS7JgXBYZk6vimtzEuGMMKgCxIJ9r03o8-uGLTi3SVgc7YIyZPZjJd36aaaM7PRiko6Odjhjo9wGHBCViH0aTlunR6xMdet1RM5suZbfkyuku4t3vXJKPp8f3zUu2fXt-3ay3mYFaTpnDxkpdgnNSSI7OVZqXoF3DNFhtV6WuRK0LIZrCspIL6awEwREwQeiMWJL63GvCGGNAp_bB9zrMCpg6GVI79ceQOhlSZ0OJ3ZxZTAcePQYVjU-_ofUBzaTs6P_R8gPBA3g-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><source>ScienceDirect Freedom Collection</source><creator>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</creator><creatorcontrib>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</creatorcontrib><description>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle. [Display omitted] •Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2024.129516</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ductility ; Hardness ; Laser quenching ; Thermal cycling</subject><ispartof>Materials chemistry and physics, 2024-08, Vol.322, p.129516, Article 129516</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</cites><orcidid>0009-0005-7353-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Guoyun</creatorcontrib><creatorcontrib>Li, Yuchao</creatorcontrib><creatorcontrib>Cheng, Shaojie</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dianlong</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><creatorcontrib>Deng, Xionghao</creatorcontrib><creatorcontrib>Zhao, Zisong</creatorcontrib><creatorcontrib>Cheng, Manping</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><title>Materials chemistry and physics</title><description>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle. [Display omitted] •Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</description><subject>Ductility</subject><subject>Hardness</subject><subject>Laser quenching</subject><subject>Thermal cycling</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nDTLquIlVWIDYmk59pi4yqPYaaX8Pa7KgiWrWdw5VzOHkHtgOTAoH3Z5ryfTYr9v55hzxosceC2hvCALWFV1JgTwS7JgXBYZk6vimtzEuGMMKgCxIJ9r03o8-uGLTi3SVgc7YIyZPZjJd36aaaM7PRiko6Odjhjo9wGHBCViH0aTlunR6xMdet1RM5suZbfkyuku4t3vXJKPp8f3zUu2fXt-3ay3mYFaTpnDxkpdgnNSSI7OVZqXoF3DNFhtV6WuRK0LIZrCspIL6awEwREwQeiMWJL63GvCGGNAp_bB9zrMCpg6GVI79ceQOhlSZ0OJ3ZxZTAcePQYVjU-_ofUBzaTs6P_R8gPBA3g-</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Luo, Guoyun</creator><creator>Li, Yuchao</creator><creator>Cheng, Shaojie</creator><creator>Li, Hui</creator><creator>Wang, Dianlong</creator><creator>Peng, Jun</creator><creator>Ma, Mingming</creator><creator>Deng, Xionghao</creator><creator>Zhao, Zisong</creator><creator>Cheng, Manping</creator><creator>Li, Simeng</creator><creator>Song, Lijun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-7353-1480</orcidid></search><sort><creationdate>20240801</creationdate><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><author>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ductility</topic><topic>Hardness</topic><topic>Laser quenching</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guoyun</creatorcontrib><creatorcontrib>Li, Yuchao</creatorcontrib><creatorcontrib>Cheng, Shaojie</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dianlong</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><creatorcontrib>Deng, Xionghao</creatorcontrib><creatorcontrib>Zhao, Zisong</creatorcontrib><creatorcontrib>Cheng, Manping</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guoyun</au><au>Li, Yuchao</au><au>Cheng, Shaojie</au><au>Li, Hui</au><au>Wang, Dianlong</au><au>Peng, Jun</au><au>Ma, Mingming</au><au>Deng, Xionghao</au><au>Zhao, Zisong</au><au>Cheng, Manping</au><au>Li, Simeng</au><au>Song, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</atitle><jtitle>Materials chemistry and physics</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>322</volume><spage>129516</spage><pages>129516-</pages><artnum>129516</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle. [Display omitted] •Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2024.129516</doi><orcidid>https://orcid.org/0009-0005-7353-1480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2024-08, Vol.322, p.129516, Article 129516
issn 0254-0584
1879-3312
language eng
recordid cdi_crossref_primary_10_1016_j_matchemphys_2024_129516
source ScienceDirect Freedom Collection
subjects Ductility
Hardness
Laser quenching
Thermal cycling
title Achieving the hardness-ductility balance of laser quenching process via thermal cycling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20the%20hardness-ductility%20balance%20of%20laser%20quenching%20process%20via%20thermal%20cycling&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Luo,%20Guoyun&rft.date=2024-08-01&rft.volume=322&rft.spage=129516&rft.pages=129516-&rft.artnum=129516&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2024.129516&rft_dat=%3Celsevier_cross%3ES0254058424006412%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true