Loading…
Achieving the hardness-ductility balance of laser quenching process via thermal cycling
The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched m...
Saved in:
Published in: | Materials chemistry and physics 2024-08, Vol.322, p.129516, Article 129516 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3 |
container_end_page | |
container_issue | |
container_start_page | 129516 |
container_title | Materials chemistry and physics |
container_volume | 322 |
creator | Luo, Guoyun Li, Yuchao Cheng, Shaojie Li, Hui Wang, Dianlong Peng, Jun Ma, Mingming Deng, Xionghao Zhao, Zisong Cheng, Manping Li, Simeng Song, Lijun |
description | The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle.
[Display omitted]
•Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability. |
doi_str_mv | 10.1016/j.matchemphys.2024.129516 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_matchemphys_2024_129516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058424006412</els_id><sourcerecordid>S0254058424006412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nDTLquIlVWIDYmk59pi4yqPYaaX8Pa7KgiWrWdw5VzOHkHtgOTAoH3Z5ryfTYr9v55hzxosceC2hvCALWFV1JgTwS7JgXBYZk6vimtzEuGMMKgCxIJ9r03o8-uGLTi3SVgc7YIyZPZjJd36aaaM7PRiko6Odjhjo9wGHBCViH0aTlunR6xMdet1RM5suZbfkyuku4t3vXJKPp8f3zUu2fXt-3ay3mYFaTpnDxkpdgnNSSI7OVZqXoF3DNFhtV6WuRK0LIZrCspIL6awEwREwQeiMWJL63GvCGGNAp_bB9zrMCpg6GVI79ceQOhlSZ0OJ3ZxZTAcePQYVjU-_ofUBzaTs6P_R8gPBA3g-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><source>ScienceDirect Freedom Collection</source><creator>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</creator><creatorcontrib>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</creatorcontrib><description>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle.
[Display omitted]
•Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2024.129516</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ductility ; Hardness ; Laser quenching ; Thermal cycling</subject><ispartof>Materials chemistry and physics, 2024-08, Vol.322, p.129516, Article 129516</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</cites><orcidid>0009-0005-7353-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Guoyun</creatorcontrib><creatorcontrib>Li, Yuchao</creatorcontrib><creatorcontrib>Cheng, Shaojie</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dianlong</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><creatorcontrib>Deng, Xionghao</creatorcontrib><creatorcontrib>Zhao, Zisong</creatorcontrib><creatorcontrib>Cheng, Manping</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><title>Materials chemistry and physics</title><description>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle.
[Display omitted]
•Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</description><subject>Ductility</subject><subject>Hardness</subject><subject>Laser quenching</subject><subject>Thermal cycling</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD-YDEjx2nDTLquIlVWIDYmk59pi4yqPYaaX8Pa7KgiWrWdw5VzOHkHtgOTAoH3Z5ryfTYr9v55hzxosceC2hvCALWFV1JgTwS7JgXBYZk6vimtzEuGMMKgCxIJ9r03o8-uGLTi3SVgc7YIyZPZjJd36aaaM7PRiko6Odjhjo9wGHBCViH0aTlunR6xMdet1RM5suZbfkyuku4t3vXJKPp8f3zUu2fXt-3ay3mYFaTpnDxkpdgnNSSI7OVZqXoF3DNFhtV6WuRK0LIZrCspIL6awEwREwQeiMWJL63GvCGGNAp_bB9zrMCpg6GVI79ceQOhlSZ0OJ3ZxZTAcePQYVjU-_ofUBzaTs6P_R8gPBA3g-</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Luo, Guoyun</creator><creator>Li, Yuchao</creator><creator>Cheng, Shaojie</creator><creator>Li, Hui</creator><creator>Wang, Dianlong</creator><creator>Peng, Jun</creator><creator>Ma, Mingming</creator><creator>Deng, Xionghao</creator><creator>Zhao, Zisong</creator><creator>Cheng, Manping</creator><creator>Li, Simeng</creator><creator>Song, Lijun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-7353-1480</orcidid></search><sort><creationdate>20240801</creationdate><title>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</title><author>Luo, Guoyun ; Li, Yuchao ; Cheng, Shaojie ; Li, Hui ; Wang, Dianlong ; Peng, Jun ; Ma, Mingming ; Deng, Xionghao ; Zhao, Zisong ; Cheng, Manping ; Li, Simeng ; Song, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ductility</topic><topic>Hardness</topic><topic>Laser quenching</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guoyun</creatorcontrib><creatorcontrib>Li, Yuchao</creatorcontrib><creatorcontrib>Cheng, Shaojie</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Dianlong</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Ma, Mingming</creatorcontrib><creatorcontrib>Deng, Xionghao</creatorcontrib><creatorcontrib>Zhao, Zisong</creatorcontrib><creatorcontrib>Cheng, Manping</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><creatorcontrib>Song, Lijun</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guoyun</au><au>Li, Yuchao</au><au>Cheng, Shaojie</au><au>Li, Hui</au><au>Wang, Dianlong</au><au>Peng, Jun</au><au>Ma, Mingming</au><au>Deng, Xionghao</au><au>Zhao, Zisong</au><au>Cheng, Manping</au><au>Li, Simeng</au><au>Song, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving the hardness-ductility balance of laser quenching process via thermal cycling</atitle><jtitle>Materials chemistry and physics</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>322</volume><spage>129516</spage><pages>129516-</pages><artnum>129516</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The imperfect ductility of laser quenched component is challenging the application of laser quenching process ignoring the excellent hardness performance. In the present work, the “drawback” thermal cycling is employed to achieve the hardness-ductility balance via in-situ tempering the as-quenched microstructure. The extremely non-isothermal condition of thermal cycling induces the partial recovery/recrystallization of martensite, precipitation of refined cementite and limited decomposition of retained austenite. A superior combination of the 184 % increase of hardness, 28.19 % improvement of strength and almost equivalent elongation of the laser quenched component are achieved. The tempered martensite decorated with sub-micron grain size, moderate carbon content and dislocation density contributes to the high hardness and strength. The softening recrystallized martensite and released retained austenite enhance the plastic deformation ability by dislocation absorption. Associated with the enhanced inhibition of microcrack propagation from the fine cementite, the ductility of laser quenched component is greatly improved. The thermal cycling provides an opportunity for the laser quenching process to be applied to the surface strengthening of axle.
[Display omitted]
•Laser quenched axle in thermal cycling obtains the hardness-ductility balance.•Thermal cycling triggers and retards the three-stage microstructure transformation.•Sub-micron tempered martensite provides the high hardness and strength.•Recrystallized martensite, refined cementite and retained austinite enhance deformation ability.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2024.129516</doi><orcidid>https://orcid.org/0009-0005-7353-1480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2024-08, Vol.322, p.129516, Article 129516 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_matchemphys_2024_129516 |
source | ScienceDirect Freedom Collection |
subjects | Ductility Hardness Laser quenching Thermal cycling |
title | Achieving the hardness-ductility balance of laser quenching process via thermal cycling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20the%20hardness-ductility%20balance%20of%20laser%20quenching%20process%20via%20thermal%20cycling&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Luo,%20Guoyun&rft.date=2024-08-01&rft.volume=322&rft.spage=129516&rft.pages=129516-&rft.artnum=129516&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2024.129516&rft_dat=%3Celsevier_cross%3ES0254058424006412%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-febd5a61ff5352eff7a261afb0a1dad86a739a433b4d06235fd5132e1ea61efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |