Loading…

Numerical modelling of the structural behaviour of thin-walled cast magnesium components using a through-process approach

A through-process methodology for numerical simulations of the structural behaviour of thin-walled cast magnesium components is presented. The methodology consists of casting process simulations using MAGMAsoft, mapping of data from the process simulation onto a FE-mesh (shell elements) and numerica...

Full description

Saved in:
Bibliographic Details
Published in:Materials in engineering 2007, Vol.28 (10), p.2619-2631
Main Authors: Dørum, Cato, Hopperstad, Odd Sture, Lademo, Odd-Geir, Langseth, Magnus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A through-process methodology for numerical simulations of the structural behaviour of thin-walled cast magnesium components is presented. The methodology consists of casting process simulations using MAGMAsoft, mapping of data from the process simulation onto a FE-mesh (shell elements) and numerical simulations using the explicit FE-code LS-DYNA. In this work, generic High Pressure Die Cast (HPDC) AM60 components have been studied using axial crushing, 3-point bending and 4-point bending tests. The experimental data are applied to obtain a validated methodology for finite element modelling of thin-walled cast components subjected to quasi-static loading. The cast magnesium alloy is modelled using a user-defined material model consisting of an elastic–plastic model based on a modified J2-flow theory and the Cockcroft–Latham fracture criterion. The fracture criterion is coupled with an element erosion algorithm available in LS-DYNA. The constitutive model and fracture criterion are calibrated both with data from material tests and data from the process simulation using MAGMAsoft.
ISSN:0261-3069
DOI:10.1016/j.matdes.2006.10.004