Loading…
The structural evolution of hollow boehmite particles induced by citric acid
Spherical boehmite particles with hollow interiors were synthesized in the hydrothermal condition using aluminum nitrate as Al3+ source, urea as precipitator and citric acid as structure directing agent, which was further transformed to hollow γ-Al2O3 products after simply heating post-treatment und...
Saved in:
Published in: | Materials letters 2013-03, Vol.95, p.9-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spherical boehmite particles with hollow interiors were synthesized in the hydrothermal condition using aluminum nitrate as Al3+ source, urea as precipitator and citric acid as structure directing agent, which was further transformed to hollow γ-Al2O3 products after simply heating post-treatment under 700°C for 4h. The crystal phase, morphologies and microstructure of the sample were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. It is suggested that the as-synthesized boehmite powder possesses hollow interior with ca.1μm in diameter and shells with 100nm in thickness, and the calcinated sample have γ crystal phase without morphological changes after heat post-treatment. The interesting hollow structure evolution was further investigated by comparative experiments and a reasonable evolution mechanism was proposed, in which the chelation of citric acid with Al3+ species and the dissolution of boehmite play the critical role in forming the hollow structure of boehmite. |
---|---|
ISSN: | 0167-577X 1873-4979 |
DOI: | 10.1016/j.matlet.2012.12.065 |