Loading…

Structural analysis of femur bone to predict the suitable alternative material

This study is based on the biomechanical analysis of femur bone using Finite Element technique. Real life activities are taken as boundary conditions and the weight of a person is considered as load for walking, standing and jumping. For biomechanical analysis, three-dimensional CAD model of human f...

Full description

Saved in:
Bibliographic Details
Main Authors: Nithin Kumar, K.C., Griya, Narendra, Shaikh, Amir, Chaudhry, Vaishali, Chavadaki, Subhash
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is based on the biomechanical analysis of femur bone using Finite Element technique. Real life activities are taken as boundary conditions and the weight of a person is considered as load for walking, standing and jumping. For biomechanical analysis, three-dimensional CAD model of human femur bone is modelled from MRI/CT Scan data using ITK-Snap software. Pre-processing and post-processing operations are done using HYPERWORKS whereas the solver is NASTRAN 10.0. Analysis is done using three materials- natural bone material, AZ31 (magnesium alloy), CP Ti (Commercially Pure Titanium Alloy). Comparative study shows that CP-Ti material generates minimum stresses for jumping, standing and walking, which are 5.69, 5.34 and 5.71 MPa respectively. And also minimum displacements for jumping, standing and walking are 0.146, 0.0583 and 0.0623 mm respectively. It is found that AZ31 is the best suited material for Bone implants and as its weight is approximately same as natural bone.
ISSN:2214-7853
2214-7853
DOI:10.1016/j.matpr.2019.12.031