Loading…

Factors affecting morphological and electrical properties of Barium Titanate: A brief review

Lead Zirconate Titanate has been extensively used to make ultrasound transducers, sensors, and actuators as well as high-value ceramic capacitors for a very long time. The main disadvantage of Lead Zirconate Titanate is its toxic nature due to the presence of Lead, which has been banned in most of t...

Full description

Saved in:
Bibliographic Details
Published in:Materials today : proceedings 2021, Vol.44, p.4548-4556
Main Authors: Tewatia, Krishna, Sharma, Anuradha, Sharma, Mamta, Kumar, Arun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lead Zirconate Titanate has been extensively used to make ultrasound transducers, sensors, and actuators as well as high-value ceramic capacitors for a very long time. The main disadvantage of Lead Zirconate Titanate is its toxic nature due to the presence of Lead, which has been banned in most of the nations around the globe. In search of Lead-free materials as a suitable replacement to Lead Zirconate Titanate, Barium Titanate is a very strong candidate. It can be used as an electrical insulator in its purest form. Doped Barium Titanate is a promising tunable material with enhanced ferroelectric and piezoelectric properties which can be a good alternative to Lead Zirconate Titanate. Properties of Barium Titanate are found to change with preparation routes, doping, and other factors. Variation in dielectric constant and high permittivity makes Barium Titanate a useful material for many applications in modern electronic devices. In this paper, analysis has been done on the changes that occur in the properties of Barium Titanate with different factors like crystallographic orientation, grain size, texturing, doping concentration, and sintering process. The piezoelectric property makes Barium Titanate useful for many applications like semiconductors, positive temperature-coefficient resistors, transducers, and ceramics. From the perspective of future applications, materials possessing good fracture toughness improved piezoelectric and dielectric properties, and higher temperature stability is needed. Therefore, it is concluded that the properties of Barium Titanate are enhanced when doped with suitable materials like Mn, Ce, Ti, Fe, Zr, etc. and by adopting different preparation routes like the sol–gel method, hydrothermal method, chemical alloying method, co-precipitation method, and polymeric precursor method.
ISSN:2214-7853
2214-7853
DOI:10.1016/j.matpr.2020.10.813