Loading…
Enhancing the behaviour of broom-strands reinforced concrete using hose-clamps
Ever-increasing housing deficits, especially in developing countries, and concerns on environmental pollution have stimulated the use of indigenous environmentally friendly materials like oil palm broom fibres (OPBF) which is an abundant waste material from oil palm cultivation and processing activi...
Saved in:
Published in: | Materials today : proceedings 2022, Vol.65, p.572-580 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ever-increasing housing deficits, especially in developing countries, and concerns on environmental pollution have stimulated the use of indigenous environmentally friendly materials like oil palm broom fibres (OPBF) which is an abundant waste material from oil palm cultivation and processing activities. Research into the suitableness of OPBF as a reinforcement material for concrete is recent with OPBF being reported to surpass steel as regards strength-to-weight ratio. However, a relatively low bond strength between the fibres and concrete has also been reported. This study, therefore, explores the possible bond enhancement of OPBF strands in concrete matrix with the aid of hose-clamps attached to the OPBF strands. Tests carried out include tensile strength test of the OPBF strands, bond pull-out test of the OPBF strands from concrete, and flexural strength test of the OPBF reinforced concrete. Concrete samples with 28 days compressive strength of 30 MPa were cast with a mix proportion of 1:1.5:3 of cement, fine and coarse aggregate respectively. A total of 22 concrete samples comprising of 2 unreinforced, 2 steel reinforced beams and 6 OPBF reinforced concrete beams of 100x100x500 mm singly reinforced with OPBF strands in three categories, in terms of cross-sectional areas of 96 mm2, 192 mm2 and 288 mm2 and 12 bond pull-out samples were prepared. For each category of reinforcement, the strands were fitted with hose clamps spaced at either 45 mm or 85 mm to improve the bond strength between the concrete and the reinforcement. For bond pull-out strength, the 3 categories of OPBF strands with attached clamps were inserted in the freshly prepared concrete to an embedment length of 80 mm. Flexural tests on the concrete beams under 4-point loading and pull-out tests of strands from the concrete were carried out at 28 days of curing. An average tensile strength of 200 MPa was obtained for OPBF strands and results show improvements of over 35% and 500% in the bond and flexural strengths, respectively, due to increased slip resistance induced by the hose clamps. The developed hose-clamp enhanced palm fibre reinforced concrete can lead to a reduction in material costs as well as in the carbon footprint on the environment and can be used in lintel beams for low-cost residential housing. |
---|---|
ISSN: | 2214-7853 2214-7853 |
DOI: | 10.1016/j.matpr.2022.03.187 |