Loading…

On Ahlfors currents

We answer a basic question in Nevanlinna theory that Ahlfors currents associated to the same entire curve may be nonunique. Indeed, we will construct one exotic entire curve f:C→X which produces infinitely many cohomologically different Ahlfors currents. Moreover, concerning Siu's decomposition...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées 2021-12, Vol.156, p.307-327
Main Authors: Huynh, Dinh Tuan, Xie, Song-Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We answer a basic question in Nevanlinna theory that Ahlfors currents associated to the same entire curve may be nonunique. Indeed, we will construct one exotic entire curve f:C→X which produces infinitely many cohomologically different Ahlfors currents. Moreover, concerning Siu's decomposition, for an arbitrary k∈Z+∪{∞}, some of the obtained Ahlfors currents have singular parts supported on k irreducible curves. In addition, they can have nonzero diffuse parts as well. Lastly, we provide new examples of diffuse Ahlfors currents on the product of two elliptic curves and on P2(C), and we show cohomologically elaborate Ahlfors currents on blow-ups of X. On répond à une question fondamentale dans la théorie de Nevanlinna que les courants d'Ahlfors associés à la même courbe entière peuvent être nonuniques. En effet, on construira une courbe entière exotique f:C→X qui produit infinité beaucoup des cohomologiquement différents courants d'Ahlfors. De plus, concernant la décomposition de Siu, pour un arbitraire k∈Z+∪{∞}, certains des courants d'Ahlfors obtenus ont des parties singulières supportées sur k courbes irréductibles. En outre, ils peuvent également avoir des parties diffuses nonnulles. Enfin, on fournit nouveaux exemples des courants d'Ahlfors diffuses sur le produit de deux courbes elliptiques et sur P2(C), et on montre des cohomologiquement élaborés courants d'Ahlfors sur des éclatements de X.
ISSN:0021-7824
DOI:10.1016/j.matpur.2021.05.007