Loading…
Carbon dots: large-scale synthesis, sensing and bioimaging
Emerging as a potent alternative to classical metal-based semiconductor quantum dots (Qdots), carbon dots (Cdots) possess the distinctive advantages of convenient synthesis, prominent biocompatibility, colorful photoluminescence, and low cost. After almost a decade of extensive studies since their d...
Saved in:
Published in: | Materials today (Kidlington, England) England), 2016-09, Vol.19 (7), p.382-393 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emerging as a potent alternative to classical metal-based semiconductor quantum dots (Qdots), carbon dots (Cdots) possess the distinctive advantages of convenient synthesis, prominent biocompatibility, colorful photoluminescence, and low cost. After almost a decade of extensive studies since their discovery, Cdots have widely been applied in bioimaging, sensing, catalysis, optoelectronics, energy conversion, etc. In this review, we first highlight the synthetic methods for Cdots in a macroscale manner. Second, we briefly discuss the fundamental mechanisms underlying the photoluminescence (PL). Third, we focus on their applications in sensing and bioimaging (including imaging-guided therapy). Some thoughts on future developments of Cdots are demonstrated as concluding remarks. |
---|---|
ISSN: | 1369-7021 1873-4103 |
DOI: | 10.1016/j.mattod.2015.11.008 |