Loading…
Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability
[Display omitted] Fe-based alloys with a nanocrystalline-amorphous nanostructure exhibit superior soft-magnetic performances; however they generally suffer from the low magnetization because of their heavy doping for an acceptable manufacturability. In this study, we proposed a revolutionary nanostr...
Saved in:
Published in: | Materials today (Kidlington, England) England), 2021-01, Vol.42, p.49-56 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Fe-based alloys with a nanocrystalline-amorphous nanostructure exhibit superior soft-magnetic performances; however they generally suffer from the low magnetization because of their heavy doping for an acceptable manufacturability. In this study, we proposed a revolutionary nanostructure-construction concept based on preforming dense nuclei in the melt-quenching process with a critical cooling-rate and refining the nano-structure via transient metalloid-rich interfaces. A novel alloy composition of Fe85.5B10Si2P2C0.5 was developed via our multi-metalloid stabilization and critical formability strategies by using a total of only 4.6 wt. % light metalloids. This unique alloy design effort leads to unprecedented magnetic properties with the super-high Bs of 1.87 T and µe of 1.0–2.5 × 104, which outperform all commercial counterparts and have a high potential to substitute for commercial bulk Si-steels currently used for soft-magnetic applications. This hetero-structuring and lean-alloying strategy provides a paradigm for the next-generation of magnetic materials. |
---|---|
ISSN: | 1369-7021 1873-4103 |
DOI: | 10.1016/j.mattod.2020.09.030 |