Loading…
Integrating spin-based technologies with atomically controlled van der Waals interfaces
[Display omitted] As the feature sizes of electronic devices continue to shrink, new technologies—in particular spintronics and derived interfacial architectures—become increasingly pivotal. In this context, two-dimensional van der Waals materials and their interfaces are particularly attractive, re...
Saved in:
Published in: | Materials today (Kidlington, England) England), 2021-12, Vol.51, p.350-364 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
As the feature sizes of electronic devices continue to shrink, new technologies—in particular spintronics and derived interfacial architectures—become increasingly pivotal. In this context, two-dimensional van der Waals materials and their interfaces are particularly attractive, relying on their ultimate atomic thicknesses and exceptional spin-related properties. This review provides a critical evaluation on the state-of-the-art of van der Waals interfaces and projected technological applications in spintronics, highlights major challenges and a viable solution—an all-in-situ growth and characterization strategy, and finally identifies several emerging spin-based technologies that might significantly benefit from the versatile van der Waals interfaces enabled by the strategy. |
---|---|
ISSN: | 1369-7021 1873-4103 |
DOI: | 10.1016/j.mattod.2021.09.015 |