Loading…

Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis

•BAFT possess high classification accuracy in bearing fault classification.•BAFT demonstrates a certain noise immunity.•BAFT enhances the interpretability and prevents a full black box of the model.•BAFT demonstrates the capability of the generalization ability. Deep learning (DL) has been widely st...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2022-11, Vol.203, p.111950, Article 111950
Main Authors: Jiao, Zhiyuan, Pan, Liren, Fan, Wei, Xu, Zhenying, Chen, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13
cites cdi_FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13
container_end_page
container_issue
container_start_page 111950
container_title Measurement : journal of the International Measurement Confederation
container_volume 203
creator Jiao, Zhiyuan
Pan, Liren
Fan, Wei
Xu, Zhenying
Chen, Chao
description •BAFT possess high classification accuracy in bearing fault classification.•BAFT demonstrates a certain noise immunity.•BAFT enhances the interpretability and prevents a full black box of the model.•BAFT demonstrates the capability of the generalization ability. Deep learning (DL) has been widely studied in the field of bearing fault diagnosis and provides some advantages when applied to rich recorded data. However, DL models remain commonly uninterpretable and are merely black boxes, hampering their wide use in bearing fault diagnosis. To classify the bearing fault effectively and understand the learned representations which are hidden inside these models, the binary arborescent filter is embedded in the Transformer in this paper. With the help of the binary arborescent filter, a novel tokenizer is constructed instead of the original one which is only used for the natural language process. We show how the feature constructed by the tokenizer can be interpreted as classifiers that determine different fault types. Therefore, based on the Binary arborescent filter Transformer, a new end-to-end fault diagnostic framework is developed to boost the diagnostic performance of the conventional DL-based bearing fault diagnosis (BFD) models. Experimental studies showed the anti-noise validity and superior performance of the proposed BFD model.
doi_str_mv 10.1016/j.measurement.2022.111950
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2022_111950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122011460</els_id><sourcerecordid>S0263224122011460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMoWKvvEB9g10yy3cOlFE9Q0AsF70I2O9lm2UOZpELf3q31wkuvBob5_vn5GLsFkYKA_K5LBzRhTzjgGFMppEwBoFqJM7aAslBJBvLznC2EzFUiZQaX7CqETgiRqypfsO7NUOwP3I8RaUcYTd0jj2TG4CYakHjc0rRvt7z2o6EDN1RPhMHO77jz_Uzx-fCH73vfHtc1GvJjy53Z95E33rTjFHy4ZhfO9AFvfueSfTw-vK-fk83r08v6fpNYJSEmlapzzBTUhclKyOzKSiVRrrJKZI0rC1vlEmyBlS1dqZraNHkJBgVYKQphQS1Zdcq1NIVA6PSO_DB31yD0UZru9B9p-ihNn6TN7PrE4lzwyyPpYD2OFhtPaKNuJv-PlG_FKX8y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis</title><source>ScienceDirect Journals</source><creator>Jiao, Zhiyuan ; Pan, Liren ; Fan, Wei ; Xu, Zhenying ; Chen, Chao</creator><creatorcontrib>Jiao, Zhiyuan ; Pan, Liren ; Fan, Wei ; Xu, Zhenying ; Chen, Chao</creatorcontrib><description>•BAFT possess high classification accuracy in bearing fault classification.•BAFT demonstrates a certain noise immunity.•BAFT enhances the interpretability and prevents a full black box of the model.•BAFT demonstrates the capability of the generalization ability. Deep learning (DL) has been widely studied in the field of bearing fault diagnosis and provides some advantages when applied to rich recorded data. However, DL models remain commonly uninterpretable and are merely black boxes, hampering their wide use in bearing fault diagnosis. To classify the bearing fault effectively and understand the learned representations which are hidden inside these models, the binary arborescent filter is embedded in the Transformer in this paper. With the help of the binary arborescent filter, a novel tokenizer is constructed instead of the original one which is only used for the natural language process. We show how the feature constructed by the tokenizer can be interpreted as classifiers that determine different fault types. Therefore, based on the Binary arborescent filter Transformer, a new end-to-end fault diagnostic framework is developed to boost the diagnostic performance of the conventional DL-based bearing fault diagnosis (BFD) models. Experimental studies showed the anti-noise validity and superior performance of the proposed BFD model.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111950</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Binary arborescent filter ; Deep learning ; Fault diagnosis ; Interpretability ; Transformer</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-11, Vol.203, p.111950, Article 111950</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13</citedby><cites>FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiao, Zhiyuan</creatorcontrib><creatorcontrib>Pan, Liren</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Xu, Zhenying</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><title>Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis</title><title>Measurement : journal of the International Measurement Confederation</title><description>•BAFT possess high classification accuracy in bearing fault classification.•BAFT demonstrates a certain noise immunity.•BAFT enhances the interpretability and prevents a full black box of the model.•BAFT demonstrates the capability of the generalization ability. Deep learning (DL) has been widely studied in the field of bearing fault diagnosis and provides some advantages when applied to rich recorded data. However, DL models remain commonly uninterpretable and are merely black boxes, hampering their wide use in bearing fault diagnosis. To classify the bearing fault effectively and understand the learned representations which are hidden inside these models, the binary arborescent filter is embedded in the Transformer in this paper. With the help of the binary arborescent filter, a novel tokenizer is constructed instead of the original one which is only used for the natural language process. We show how the feature constructed by the tokenizer can be interpreted as classifiers that determine different fault types. Therefore, based on the Binary arborescent filter Transformer, a new end-to-end fault diagnostic framework is developed to boost the diagnostic performance of the conventional DL-based bearing fault diagnosis (BFD) models. Experimental studies showed the anti-noise validity and superior performance of the proposed BFD model.</description><subject>Binary arborescent filter</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Interpretability</subject><subject>Transformer</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkNtKAzEQhoMoWKvvEB9g10yy3cOlFE9Q0AsF70I2O9lm2UOZpELf3q31wkuvBob5_vn5GLsFkYKA_K5LBzRhTzjgGFMppEwBoFqJM7aAslBJBvLznC2EzFUiZQaX7CqETgiRqypfsO7NUOwP3I8RaUcYTd0jj2TG4CYakHjc0rRvt7z2o6EDN1RPhMHO77jz_Uzx-fCH73vfHtc1GvJjy53Z95E33rTjFHy4ZhfO9AFvfueSfTw-vK-fk83r08v6fpNYJSEmlapzzBTUhclKyOzKSiVRrrJKZI0rC1vlEmyBlS1dqZraNHkJBgVYKQphQS1Zdcq1NIVA6PSO_DB31yD0UZru9B9p-ihNn6TN7PrE4lzwyyPpYD2OFhtPaKNuJv-PlG_FKX8y</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Jiao, Zhiyuan</creator><creator>Pan, Liren</creator><creator>Fan, Wei</creator><creator>Xu, Zhenying</creator><creator>Chen, Chao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221115</creationdate><title>Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis</title><author>Jiao, Zhiyuan ; Pan, Liren ; Fan, Wei ; Xu, Zhenying ; Chen, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary arborescent filter</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Interpretability</topic><topic>Transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Zhiyuan</creatorcontrib><creatorcontrib>Pan, Liren</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Xu, Zhenying</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Zhiyuan</au><au>Pan, Liren</au><au>Fan, Wei</au><au>Xu, Zhenying</au><au>Chen, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-11-15</date><risdate>2022</risdate><volume>203</volume><spage>111950</spage><pages>111950-</pages><artnum>111950</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•BAFT possess high classification accuracy in bearing fault classification.•BAFT demonstrates a certain noise immunity.•BAFT enhances the interpretability and prevents a full black box of the model.•BAFT demonstrates the capability of the generalization ability. Deep learning (DL) has been widely studied in the field of bearing fault diagnosis and provides some advantages when applied to rich recorded data. However, DL models remain commonly uninterpretable and are merely black boxes, hampering their wide use in bearing fault diagnosis. To classify the bearing fault effectively and understand the learned representations which are hidden inside these models, the binary arborescent filter is embedded in the Transformer in this paper. With the help of the binary arborescent filter, a novel tokenizer is constructed instead of the original one which is only used for the natural language process. We show how the feature constructed by the tokenizer can be interpreted as classifiers that determine different fault types. Therefore, based on the Binary arborescent filter Transformer, a new end-to-end fault diagnostic framework is developed to boost the diagnostic performance of the conventional DL-based bearing fault diagnosis (BFD) models. Experimental studies showed the anti-noise validity and superior performance of the proposed BFD model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111950</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-11, Vol.203, p.111950, Article 111950
issn 0263-2241
1873-412X
language eng
recordid cdi_crossref_primary_10_1016_j_measurement_2022_111950
source ScienceDirect Journals
subjects Binary arborescent filter
Deep learning
Fault diagnosis
Interpretability
Transformer
title Partly interpretable transformer through binary arborescent filter for intelligent bearing fault diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partly%20interpretable%20transformer%20through%20binary%20arborescent%20filter%20for%20intelligent%20bearing%20fault%20diagnosis&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Jiao,%20Zhiyuan&rft.date=2022-11-15&rft.volume=203&rft.spage=111950&rft.pages=111950-&rft.artnum=111950&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111950&rft_dat=%3Celsevier_cross%3ES0263224122011460%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-93b6e431b7a4814c5c232e254904df87c9621c7e9c8f83dbad681ae01c2070c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true