Loading…

Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data

•Distribution characteristics are useful in de-spiking velocity data.•The proposed filtering method preserves valid data to the greatest extend.•Power spectra calculated from altered fluctuating velocity signals changes subtly.•Consideration should be taken in choosing the suitable spike-replacement...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2022-11, Vol.204, p.112043, Article 112043
Main Authors: Chen, Yue, Yang, Wenjun, Lin, Haili, Li, Bin, Jing, Siyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23
cites cdi_FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23
container_end_page
container_issue
container_start_page 112043
container_title Measurement : journal of the International Measurement Confederation
container_volume 204
creator Chen, Yue
Yang, Wenjun
Lin, Haili
Li, Bin
Jing, Siyu
description •Distribution characteristics are useful in de-spiking velocity data.•The proposed filtering method preserves valid data to the greatest extend.•Power spectra calculated from altered fluctuating velocity signals changes subtly.•Consideration should be taken in choosing the suitable spike-replacement strategy. Acoustic doppler velocimeter (ADV) has attracted significant attention, especially the research on its data post-processing, which is a vitial step before calculating turbulence statistics. This work processes the acoustic correlation velocimeter (ACV) time series, which have an identical characteristics with ADV data, sampled in open-channel flows utilizing current algorithms combined with a proposed modified kernel density-based algorithm (mkde) that preserves valid data to a larger extent. Trials investigating several interpolation strategies among various velocity series with different data quality demonstrate that without any replacement, the power spectrum density of data series with up to 22% spikes satisfies the Kolmogorov −5/3 law in an inertial subrange. Moreover, in highly contaminated velocity series presenting more consecutive spikes, linear and the last valid data interpolation turned out to be more robust. This paper shed light on dealing with outliers in acoustic Doppler velocimeter data.
doi_str_mv 10.1016/j.measurement.2022.112043
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2022_112043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122012398</els_id><sourcerecordid>S0263224122012398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwDuEBEvwTp8kRlV-piAsIbpazXhe3SRzZbiXenlTlwJHTrnY1o5mPkGtGC0ZZdbMpetRxF7DHIRWccl4wxmkpTsiM1QuRl4x_npIZ5ZXIOS_ZObmIcUMprURTzcjHizfOOjTZFsOAXWZwiC59562O01F3ax9c-uoz68P0i6PbumGdafC7mBxkd34cOwzZHjsPrsc07UYnfUnOrO4iXv3OOXl_uH9bPuWr18fn5e0qB8FZyrlkTSut1UwLCUJKaCli09Zi6tCCaWrQRli5sLISRkgrykUlSrAGKNSGizlpjr4QfIwBrRqD63X4VoyqAyG1UX8IqQMhdSQ0aZdHLU4B9w6DiuBwADQuICRlvPuHyw-my3fn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data</title><source>Elsevier</source><creator>Chen, Yue ; Yang, Wenjun ; Lin, Haili ; Li, Bin ; Jing, Siyu</creator><creatorcontrib>Chen, Yue ; Yang, Wenjun ; Lin, Haili ; Li, Bin ; Jing, Siyu</creatorcontrib><description>•Distribution characteristics are useful in de-spiking velocity data.•The proposed filtering method preserves valid data to the greatest extend.•Power spectra calculated from altered fluctuating velocity signals changes subtly.•Consideration should be taken in choosing the suitable spike-replacement strategy. Acoustic doppler velocimeter (ADV) has attracted significant attention, especially the research on its data post-processing, which is a vitial step before calculating turbulence statistics. This work processes the acoustic correlation velocimeter (ACV) time series, which have an identical characteristics with ADV data, sampled in open-channel flows utilizing current algorithms combined with a proposed modified kernel density-based algorithm (mkde) that preserves valid data to a larger extent. Trials investigating several interpolation strategies among various velocity series with different data quality demonstrate that without any replacement, the power spectrum density of data series with up to 22% spikes satisfies the Kolmogorov −5/3 law in an inertial subrange. Moreover, in highly contaminated velocity series presenting more consecutive spikes, linear and the last valid data interpolation turned out to be more robust. This paper shed light on dealing with outliers in acoustic Doppler velocimeter data.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.112043</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic Doppler velocimeter ; Interpolation strategy ; Spike detection ; Turbulence measurement ; Velocity data post-processing</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-11, Vol.204, p.112043, Article 112043</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23</citedby><cites>FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Yang, Wenjun</creatorcontrib><creatorcontrib>Lin, Haili</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Jing, Siyu</creatorcontrib><title>Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Distribution characteristics are useful in de-spiking velocity data.•The proposed filtering method preserves valid data to the greatest extend.•Power spectra calculated from altered fluctuating velocity signals changes subtly.•Consideration should be taken in choosing the suitable spike-replacement strategy. Acoustic doppler velocimeter (ADV) has attracted significant attention, especially the research on its data post-processing, which is a vitial step before calculating turbulence statistics. This work processes the acoustic correlation velocimeter (ACV) time series, which have an identical characteristics with ADV data, sampled in open-channel flows utilizing current algorithms combined with a proposed modified kernel density-based algorithm (mkde) that preserves valid data to a larger extent. Trials investigating several interpolation strategies among various velocity series with different data quality demonstrate that without any replacement, the power spectrum density of data series with up to 22% spikes satisfies the Kolmogorov −5/3 law in an inertial subrange. Moreover, in highly contaminated velocity series presenting more consecutive spikes, linear and the last valid data interpolation turned out to be more robust. This paper shed light on dealing with outliers in acoustic Doppler velocimeter data.</description><subject>Acoustic Doppler velocimeter</subject><subject>Interpolation strategy</subject><subject>Spike detection</subject><subject>Turbulence measurement</subject><subject>Velocity data post-processing</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwDuEBEvwTp8kRlV-piAsIbpazXhe3SRzZbiXenlTlwJHTrnY1o5mPkGtGC0ZZdbMpetRxF7DHIRWccl4wxmkpTsiM1QuRl4x_npIZ5ZXIOS_ZObmIcUMprURTzcjHizfOOjTZFsOAXWZwiC59562O01F3ax9c-uoz68P0i6PbumGdafC7mBxkd34cOwzZHjsPrsc07UYnfUnOrO4iXv3OOXl_uH9bPuWr18fn5e0qB8FZyrlkTSut1UwLCUJKaCli09Zi6tCCaWrQRli5sLISRkgrykUlSrAGKNSGizlpjr4QfIwBrRqD63X4VoyqAyG1UX8IqQMhdSQ0aZdHLU4B9w6DiuBwADQuICRlvPuHyw-my3fn</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Chen, Yue</creator><creator>Yang, Wenjun</creator><creator>Lin, Haili</creator><creator>Li, Bin</creator><creator>Jing, Siyu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221130</creationdate><title>Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data</title><author>Chen, Yue ; Yang, Wenjun ; Lin, Haili ; Li, Bin ; Jing, Siyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic Doppler velocimeter</topic><topic>Interpolation strategy</topic><topic>Spike detection</topic><topic>Turbulence measurement</topic><topic>Velocity data post-processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Yang, Wenjun</creatorcontrib><creatorcontrib>Lin, Haili</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Jing, Siyu</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yue</au><au>Yang, Wenjun</au><au>Lin, Haili</au><au>Li, Bin</au><au>Jing, Siyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-11-30</date><risdate>2022</risdate><volume>204</volume><spage>112043</spage><pages>112043-</pages><artnum>112043</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Distribution characteristics are useful in de-spiking velocity data.•The proposed filtering method preserves valid data to the greatest extend.•Power spectra calculated from altered fluctuating velocity signals changes subtly.•Consideration should be taken in choosing the suitable spike-replacement strategy. Acoustic doppler velocimeter (ADV) has attracted significant attention, especially the research on its data post-processing, which is a vitial step before calculating turbulence statistics. This work processes the acoustic correlation velocimeter (ACV) time series, which have an identical characteristics with ADV data, sampled in open-channel flows utilizing current algorithms combined with a proposed modified kernel density-based algorithm (mkde) that preserves valid data to a larger extent. Trials investigating several interpolation strategies among various velocity series with different data quality demonstrate that without any replacement, the power spectrum density of data series with up to 22% spikes satisfies the Kolmogorov −5/3 law in an inertial subrange. Moreover, in highly contaminated velocity series presenting more consecutive spikes, linear and the last valid data interpolation turned out to be more robust. This paper shed light on dealing with outliers in acoustic Doppler velocimeter data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.112043</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-11, Vol.204, p.112043, Article 112043
issn 0263-2241
1873-412X
language eng
recordid cdi_crossref_primary_10_1016_j_measurement_2022_112043
source Elsevier
subjects Acoustic Doppler velocimeter
Interpolation strategy
Spike detection
Turbulence measurement
Velocity data post-processing
title Modified kernel density-based algorithm for despiking acoustic Doppler velocimeter data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20kernel%20density-based%20algorithm%20for%20despiking%20acoustic%20Doppler%20velocimeter%20data&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Chen,%20Yue&rft.date=2022-11-30&rft.volume=204&rft.spage=112043&rft.pages=112043-&rft.artnum=112043&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.112043&rft_dat=%3Celsevier_cross%3ES0263224122012398%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-2519b5ffa1a35c355cb0ee9b83204bcd98cad3f57f563d35f347634cfdc0c8d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true