Loading…

Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model

•Propose a new PQD accurate recognition method based on 3D- VSC and ER-MVCNN.•PQD signal is converted into 3D spiral curve to realize visual enhancement.•Multichannel image feature of 3D-VSC is fused by MVCNN.•Hybrid model is consisted by MVCNN and ECA-Resnet to improve performances.•Real experiment...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2024-05, Vol.231, p.114654, Article 114654
Main Authors: Song, Juncai, Wu, Jing, Wang, Xiaoqing, Duan, Zhangling, Wang, Xiaoxian, Lu, Siliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3
cites cdi_FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3
container_end_page
container_issue
container_start_page 114654
container_title Measurement : journal of the International Measurement Confederation
container_volume 231
creator Song, Juncai
Wu, Jing
Wang, Xiaoqing
Duan, Zhangling
Wang, Xiaoxian
Lu, Siliang
description •Propose a new PQD accurate recognition method based on 3D- VSC and ER-MVCNN.•PQD signal is converted into 3D spiral curve to realize visual enhancement.•Multichannel image feature of 3D-VSC is fused by MVCNN.•Hybrid model is consisted by MVCNN and ECA-Resnet to improve performances.•Real experiment and IEEE PES datasets are used to certify advantages of proposed method. This work proposes a new method for accurate power quality disturbance (PQD) classification. Firstly, 3D-visualized spiral curve (3D-VSC) is innovatively proposed to convert 1D PQD signal into 3D spiral curve. It can display time-frequency information in multi-dimensional perspectives and the disturbance characteristics more intuitively in image visual sense, which can realize PQD features enhancement. Secondly, efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN) hybrid model is creatively proposed by introducing ECA-ResNet as feature extraction module. It can solve limitations of multi-view convolution neural network (MVCNN) in single-view feature extraction and defects of multi-view feature fusion in the weighting problem, which can effectively achieve classification accuracy to 99.68 %. Comparison experiments with MVCNN, AlexNet-MVCNN, VGGNet-MVCNN, ResNet18-MVCNN, and SENet-ResNet-MVCNN show that ER-MVCNN has higher accuracy by 12.4 %, 6.79 %, 6.14 %, 3.86 %, and 0.88 % respectively. Finally, through establishing PQD experiment platform and IEEE PES datasets to verify high accuracy and robustness of proposed method.
doi_str_mv 10.1016/j.measurement.2024.114654
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2024_114654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224124005396</els_id><sourcerecordid>S0263224124005396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3</originalsourceid><addsrcrecordid>eNqNkMtOwzAURL0AiVL4B_MBCX4kTrKsQnlIpUgI2FrO9Y1wlUexk6Ly9U1VFixZXWk0M5p7CLnhLOaMq9tN3KIJo8cWuyEWTCQx54lKkzMyY0LJSIiEX5DLEDaMMSULNSN-ATB6MyCFxoTgagdmcH1H-5pu-2_09Gs0jRv21LowjL4yHSCtTEBLJ5e8ozsXjo6fSQhb501Dp8IdUtNZ-rmvvLN0-Ro9f5TrNW17i80VOa9NE_D6987J-_3yrXyMVi8PT-ViFYEUfIhSgWkOFkVRmRoU2LSqsjyzwK0CkJkUmHHMVc2qIitMwVVu5SRJUAZrYeWcFKde8H0IHmu99a41fq8500dgeqP_ANNHYPoEbMqWpyxOA3cOvQ7gcHrdOo8waNu7f7QcAGIvf0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model</title><source>Elsevier</source><creator>Song, Juncai ; Wu, Jing ; Wang, Xiaoqing ; Duan, Zhangling ; Wang, Xiaoxian ; Lu, Siliang</creator><creatorcontrib>Song, Juncai ; Wu, Jing ; Wang, Xiaoqing ; Duan, Zhangling ; Wang, Xiaoxian ; Lu, Siliang</creatorcontrib><description>•Propose a new PQD accurate recognition method based on 3D- VSC and ER-MVCNN.•PQD signal is converted into 3D spiral curve to realize visual enhancement.•Multichannel image feature of 3D-VSC is fused by MVCNN.•Hybrid model is consisted by MVCNN and ECA-Resnet to improve performances.•Real experiment and IEEE PES datasets are used to certify advantages of proposed method. This work proposes a new method for accurate power quality disturbance (PQD) classification. Firstly, 3D-visualized spiral curve (3D-VSC) is innovatively proposed to convert 1D PQD signal into 3D spiral curve. It can display time-frequency information in multi-dimensional perspectives and the disturbance characteristics more intuitively in image visual sense, which can realize PQD features enhancement. Secondly, efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN) hybrid model is creatively proposed by introducing ECA-ResNet as feature extraction module. It can solve limitations of multi-view convolution neural network (MVCNN) in single-view feature extraction and defects of multi-view feature fusion in the weighting problem, which can effectively achieve classification accuracy to 99.68 %. Comparison experiments with MVCNN, AlexNet-MVCNN, VGGNet-MVCNN, ResNet18-MVCNN, and SENet-ResNet-MVCNN show that ER-MVCNN has higher accuracy by 12.4 %, 6.79 %, 6.14 %, 3.86 %, and 0.88 % respectively. Finally, through establishing PQD experiment platform and IEEE PES datasets to verify high accuracy and robustness of proposed method.</description><identifier>ISSN: 0263-2241</identifier><identifier>DOI: 10.1016/j.measurement.2024.114654</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>3D-visualized spiral curve ; Efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN) ; Multi-view convolutional neural network (MVCNN) ; Power quality disturbance ; Recognition and classification</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2024-05, Vol.231, p.114654, Article 114654</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3</citedby><cites>FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Juncai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Duan, Zhangling</creatorcontrib><creatorcontrib>Wang, Xiaoxian</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><title>Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Propose a new PQD accurate recognition method based on 3D- VSC and ER-MVCNN.•PQD signal is converted into 3D spiral curve to realize visual enhancement.•Multichannel image feature of 3D-VSC is fused by MVCNN.•Hybrid model is consisted by MVCNN and ECA-Resnet to improve performances.•Real experiment and IEEE PES datasets are used to certify advantages of proposed method. This work proposes a new method for accurate power quality disturbance (PQD) classification. Firstly, 3D-visualized spiral curve (3D-VSC) is innovatively proposed to convert 1D PQD signal into 3D spiral curve. It can display time-frequency information in multi-dimensional perspectives and the disturbance characteristics more intuitively in image visual sense, which can realize PQD features enhancement. Secondly, efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN) hybrid model is creatively proposed by introducing ECA-ResNet as feature extraction module. It can solve limitations of multi-view convolution neural network (MVCNN) in single-view feature extraction and defects of multi-view feature fusion in the weighting problem, which can effectively achieve classification accuracy to 99.68 %. Comparison experiments with MVCNN, AlexNet-MVCNN, VGGNet-MVCNN, ResNet18-MVCNN, and SENet-ResNet-MVCNN show that ER-MVCNN has higher accuracy by 12.4 %, 6.79 %, 6.14 %, 3.86 %, and 0.88 % respectively. Finally, through establishing PQD experiment platform and IEEE PES datasets to verify high accuracy and robustness of proposed method.</description><subject>3D-visualized spiral curve</subject><subject>Efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN)</subject><subject>Multi-view convolutional neural network (MVCNN)</subject><subject>Power quality disturbance</subject><subject>Recognition and classification</subject><issn>0263-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAURL0AiVL4B_MBCX4kTrKsQnlIpUgI2FrO9Y1wlUexk6Ly9U1VFixZXWk0M5p7CLnhLOaMq9tN3KIJo8cWuyEWTCQx54lKkzMyY0LJSIiEX5DLEDaMMSULNSN-ATB6MyCFxoTgagdmcH1H-5pu-2_09Gs0jRv21LowjL4yHSCtTEBLJ5e8ozsXjo6fSQhb501Dp8IdUtNZ-rmvvLN0-Ro9f5TrNW17i80VOa9NE_D6987J-_3yrXyMVi8PT-ViFYEUfIhSgWkOFkVRmRoU2LSqsjyzwK0CkJkUmHHMVc2qIitMwVVu5SRJUAZrYeWcFKde8H0IHmu99a41fq8500dgeqP_ANNHYPoEbMqWpyxOA3cOvQ7gcHrdOo8waNu7f7QcAGIvf0I</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Song, Juncai</creator><creator>Wu, Jing</creator><creator>Wang, Xiaoqing</creator><creator>Duan, Zhangling</creator><creator>Wang, Xiaoxian</creator><creator>Lu, Siliang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240531</creationdate><title>Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model</title><author>Song, Juncai ; Wu, Jing ; Wang, Xiaoqing ; Duan, Zhangling ; Wang, Xiaoxian ; Lu, Siliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-visualized spiral curve</topic><topic>Efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN)</topic><topic>Multi-view convolutional neural network (MVCNN)</topic><topic>Power quality disturbance</topic><topic>Recognition and classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Juncai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Duan, Zhangling</creatorcontrib><creatorcontrib>Wang, Xiaoxian</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Juncai</au><au>Wu, Jing</au><au>Wang, Xiaoqing</au><au>Duan, Zhangling</au><au>Wang, Xiaoxian</au><au>Lu, Siliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2024-05-31</date><risdate>2024</risdate><volume>231</volume><spage>114654</spage><pages>114654-</pages><artnum>114654</artnum><issn>0263-2241</issn><abstract>•Propose a new PQD accurate recognition method based on 3D- VSC and ER-MVCNN.•PQD signal is converted into 3D spiral curve to realize visual enhancement.•Multichannel image feature of 3D-VSC is fused by MVCNN.•Hybrid model is consisted by MVCNN and ECA-Resnet to improve performances.•Real experiment and IEEE PES datasets are used to certify advantages of proposed method. This work proposes a new method for accurate power quality disturbance (PQD) classification. Firstly, 3D-visualized spiral curve (3D-VSC) is innovatively proposed to convert 1D PQD signal into 3D spiral curve. It can display time-frequency information in multi-dimensional perspectives and the disturbance characteristics more intuitively in image visual sense, which can realize PQD features enhancement. Secondly, efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN) hybrid model is creatively proposed by introducing ECA-ResNet as feature extraction module. It can solve limitations of multi-view convolution neural network (MVCNN) in single-view feature extraction and defects of multi-view feature fusion in the weighting problem, which can effectively achieve classification accuracy to 99.68 %. Comparison experiments with MVCNN, AlexNet-MVCNN, VGGNet-MVCNN, ResNet18-MVCNN, and SENet-ResNet-MVCNN show that ER-MVCNN has higher accuracy by 12.4 %, 6.79 %, 6.14 %, 3.86 %, and 0.88 % respectively. Finally, through establishing PQD experiment platform and IEEE PES datasets to verify high accuracy and robustness of proposed method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2024.114654</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2024-05, Vol.231, p.114654, Article 114654
issn 0263-2241
language eng
recordid cdi_crossref_primary_10_1016_j_measurement_2024_114654
source Elsevier
subjects 3D-visualized spiral curve
Efficient channel attention-ResNet multi-view convolution neural network (ER-MVCNN)
Multi-view convolutional neural network (MVCNN)
Power quality disturbance
Recognition and classification
title Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20classification%20of%20power%20quality%20disturbance%20based%20on%203D%20visualized%20spiral%20curve%20and%20hybrid%20ER-MVCNN%20model&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Song,%20Juncai&rft.date=2024-05-31&rft.volume=231&rft.spage=114654&rft.pages=114654-&rft.artnum=114654&rft.issn=0263-2241&rft_id=info:doi/10.1016/j.measurement.2024.114654&rft_dat=%3Celsevier_cross%3ES0263224124005396%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-52e58cde29bafc6cd5bb787dc1d6cc3732e71e86f0b979a9168d3e713c6aef2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true