Loading…

Advanced Phase Diversity Method for telescope static aberration compensation

Accurate calibration is essential for high-performance Adaptive Optics (AO) systems in astronomy. This paper presents a novel methodology for AO systems calibration that preserves the optical path integrity while achieving high-quality results. By eliminating the need for optical modifications, this...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2025-02, Vol.241, p.115761, Article 115761
Main Authors: Rodríguez-Linares, Nicolás, González-Cava, José M., Montoya, Luzma, Méndez, Juan Albino, Martín, Yolanda, Núñez-Cagigal, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-f61b94f40bfadf256284bebb1d80257727880f94826f43c8e348d433cc19d3913
container_end_page
container_issue
container_start_page 115761
container_title Measurement : journal of the International Measurement Confederation
container_volume 241
creator Rodríguez-Linares, Nicolás
González-Cava, José M.
Montoya, Luzma
Méndez, Juan Albino
Martín, Yolanda
Núñez-Cagigal, Miguel
description Accurate calibration is essential for high-performance Adaptive Optics (AO) systems in astronomy. This paper presents a novel methodology for AO systems calibration that preserves the optical path integrity while achieving high-quality results. By eliminating the need for optical modifications, this approach simplifies system complexity and accounts for all static aberrations. The main novelty of this proposal is an advanced Phase Diversity (PD) method for estimating static optical aberrations. Unlike conventional PD techniques, this approach uses the AO system’s deformable mirror to introduce different diversities, eliminating the need for additional calibration hardware. Furthermore, the optimizer Adam is introduced for the first time in this field to estimate the optical aberrations. To evaluate the performance of this new methodology, a set of experiments under varying operating conditions and optimization parameters has been conducted. Results demonstrated that the presented methodology is capable of providing diffraction-limited corrected images with a Strehl Ratio (SR) exceeding 0.80 within 2 min. Furthermore, employing a Manhattan distance-based error function effectively balanced estimation speed and accuracy. The method demonstrated effectiveness across a wide range of aberration magnitudes, achieving an error of 3 nm in the best scenarios. This proposal represents an advancement in the identification and correction of static aberrations in telescope optical systems, directly improving the acquisition of high-quality references for AO sensing. •Adam proves to be a powerful optimizer for phase diversity methods.•Batch diversities improves the convergence over complex estimation.•Phase diversity decreases the complexity of adaptive optics calibration techniques.•Deformable mirror expands the horizon to use phase diversity techniques.
doi_str_mv 10.1016/j.measurement.2024.115761
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2024_115761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224124016464</els_id><sourcerecordid>S0263224124016464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f61b94f40bfadf256284bebb1d80257727880f94826f43c8e348d433cc19d3913</originalsourceid><addsrcrecordid>eNqN0MtOwzAQBVAvQKIU_sF8QIJfdZxlVV6VimABa8uxx6qjJo5sU6l_T0tZsGQ1M4t7NToI3VFSU0LlfV8PYPJXggHGUjPCRE3popH0As0Ik7xiTNArdJ1zTwiRvJUztFm6vRktOPy-NRnwQ9hDyqEc8CuUbXTYx4QL7CDbOAHOxZRgsekgpeMWR2zjMMGYf44bdOnNLsPt75yjz6fHj9VLtXl7Xq-Wm8oyIUvlJe1a4QXpvHGeLSRTooOuo04Rtmga1ihFfCsUk15wq4AL5QTn1tLW8ZbyOWrPvTbFnBN4PaUwmHTQlOgThe71Hwp9otBnimN2dc7C8cF9gKSzDXASCAls0S6Gf7R8AxZ6cNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advanced Phase Diversity Method for telescope static aberration compensation</title><source>ScienceDirect Journals</source><creator>Rodríguez-Linares, Nicolás ; González-Cava, José M. ; Montoya, Luzma ; Méndez, Juan Albino ; Martín, Yolanda ; Núñez-Cagigal, Miguel</creator><creatorcontrib>Rodríguez-Linares, Nicolás ; González-Cava, José M. ; Montoya, Luzma ; Méndez, Juan Albino ; Martín, Yolanda ; Núñez-Cagigal, Miguel</creatorcontrib><description>Accurate calibration is essential for high-performance Adaptive Optics (AO) systems in astronomy. This paper presents a novel methodology for AO systems calibration that preserves the optical path integrity while achieving high-quality results. By eliminating the need for optical modifications, this approach simplifies system complexity and accounts for all static aberrations. The main novelty of this proposal is an advanced Phase Diversity (PD) method for estimating static optical aberrations. Unlike conventional PD techniques, this approach uses the AO system’s deformable mirror to introduce different diversities, eliminating the need for additional calibration hardware. Furthermore, the optimizer Adam is introduced for the first time in this field to estimate the optical aberrations. To evaluate the performance of this new methodology, a set of experiments under varying operating conditions and optimization parameters has been conducted. Results demonstrated that the presented methodology is capable of providing diffraction-limited corrected images with a Strehl Ratio (SR) exceeding 0.80 within 2 min. Furthermore, employing a Manhattan distance-based error function effectively balanced estimation speed and accuracy. The method demonstrated effectiveness across a wide range of aberration magnitudes, achieving an error of 3 nm in the best scenarios. This proposal represents an advancement in the identification and correction of static aberrations in telescope optical systems, directly improving the acquisition of high-quality references for AO sensing. •Adam proves to be a powerful optimizer for phase diversity methods.•Batch diversities improves the convergence over complex estimation.•Phase diversity decreases the complexity of adaptive optics calibration techniques.•Deformable mirror expands the horizon to use phase diversity techniques.</description><identifier>ISSN: 0263-2241</identifier><identifier>DOI: 10.1016/j.measurement.2024.115761</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive optics ; Deformable mirror ; Phase diversity ; Static aberrations ; Telescope instrumentation ; Wavefront sensing</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2025-02, Vol.241, p.115761, Article 115761</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f61b94f40bfadf256284bebb1d80257727880f94826f43c8e348d433cc19d3913</cites><orcidid>0000-0001-9099-7366 ; 0000-0003-4834-223X ; 0000-0002-6835-9082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rodríguez-Linares, Nicolás</creatorcontrib><creatorcontrib>González-Cava, José M.</creatorcontrib><creatorcontrib>Montoya, Luzma</creatorcontrib><creatorcontrib>Méndez, Juan Albino</creatorcontrib><creatorcontrib>Martín, Yolanda</creatorcontrib><creatorcontrib>Núñez-Cagigal, Miguel</creatorcontrib><title>Advanced Phase Diversity Method for telescope static aberration compensation</title><title>Measurement : journal of the International Measurement Confederation</title><description>Accurate calibration is essential for high-performance Adaptive Optics (AO) systems in astronomy. This paper presents a novel methodology for AO systems calibration that preserves the optical path integrity while achieving high-quality results. By eliminating the need for optical modifications, this approach simplifies system complexity and accounts for all static aberrations. The main novelty of this proposal is an advanced Phase Diversity (PD) method for estimating static optical aberrations. Unlike conventional PD techniques, this approach uses the AO system’s deformable mirror to introduce different diversities, eliminating the need for additional calibration hardware. Furthermore, the optimizer Adam is introduced for the first time in this field to estimate the optical aberrations. To evaluate the performance of this new methodology, a set of experiments under varying operating conditions and optimization parameters has been conducted. Results demonstrated that the presented methodology is capable of providing diffraction-limited corrected images with a Strehl Ratio (SR) exceeding 0.80 within 2 min. Furthermore, employing a Manhattan distance-based error function effectively balanced estimation speed and accuracy. The method demonstrated effectiveness across a wide range of aberration magnitudes, achieving an error of 3 nm in the best scenarios. This proposal represents an advancement in the identification and correction of static aberrations in telescope optical systems, directly improving the acquisition of high-quality references for AO sensing. •Adam proves to be a powerful optimizer for phase diversity methods.•Batch diversities improves the convergence over complex estimation.•Phase diversity decreases the complexity of adaptive optics calibration techniques.•Deformable mirror expands the horizon to use phase diversity techniques.</description><subject>Adaptive optics</subject><subject>Deformable mirror</subject><subject>Phase diversity</subject><subject>Static aberrations</subject><subject>Telescope instrumentation</subject><subject>Wavefront sensing</subject><issn>0263-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqN0MtOwzAQBVAvQKIU_sF8QIJfdZxlVV6VimABa8uxx6qjJo5sU6l_T0tZsGQ1M4t7NToI3VFSU0LlfV8PYPJXggHGUjPCRE3popH0As0Ik7xiTNArdJ1zTwiRvJUztFm6vRktOPy-NRnwQ9hDyqEc8CuUbXTYx4QL7CDbOAHOxZRgsekgpeMWR2zjMMGYf44bdOnNLsPt75yjz6fHj9VLtXl7Xq-Wm8oyIUvlJe1a4QXpvHGeLSRTooOuo04Rtmga1ihFfCsUk15wq4AL5QTn1tLW8ZbyOWrPvTbFnBN4PaUwmHTQlOgThe71Hwp9otBnimN2dc7C8cF9gKSzDXASCAls0S6Gf7R8AxZ6cNI</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Rodríguez-Linares, Nicolás</creator><creator>González-Cava, José M.</creator><creator>Montoya, Luzma</creator><creator>Méndez, Juan Albino</creator><creator>Martín, Yolanda</creator><creator>Núñez-Cagigal, Miguel</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9099-7366</orcidid><orcidid>https://orcid.org/0000-0003-4834-223X</orcidid><orcidid>https://orcid.org/0000-0002-6835-9082</orcidid></search><sort><creationdate>20250201</creationdate><title>Advanced Phase Diversity Method for telescope static aberration compensation</title><author>Rodríguez-Linares, Nicolás ; González-Cava, José M. ; Montoya, Luzma ; Méndez, Juan Albino ; Martín, Yolanda ; Núñez-Cagigal, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f61b94f40bfadf256284bebb1d80257727880f94826f43c8e348d433cc19d3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptive optics</topic><topic>Deformable mirror</topic><topic>Phase diversity</topic><topic>Static aberrations</topic><topic>Telescope instrumentation</topic><topic>Wavefront sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Linares, Nicolás</creatorcontrib><creatorcontrib>González-Cava, José M.</creatorcontrib><creatorcontrib>Montoya, Luzma</creatorcontrib><creatorcontrib>Méndez, Juan Albino</creatorcontrib><creatorcontrib>Martín, Yolanda</creatorcontrib><creatorcontrib>Núñez-Cagigal, Miguel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Linares, Nicolás</au><au>González-Cava, José M.</au><au>Montoya, Luzma</au><au>Méndez, Juan Albino</au><au>Martín, Yolanda</au><au>Núñez-Cagigal, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Phase Diversity Method for telescope static aberration compensation</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>241</volume><spage>115761</spage><pages>115761-</pages><artnum>115761</artnum><issn>0263-2241</issn><abstract>Accurate calibration is essential for high-performance Adaptive Optics (AO) systems in astronomy. This paper presents a novel methodology for AO systems calibration that preserves the optical path integrity while achieving high-quality results. By eliminating the need for optical modifications, this approach simplifies system complexity and accounts for all static aberrations. The main novelty of this proposal is an advanced Phase Diversity (PD) method for estimating static optical aberrations. Unlike conventional PD techniques, this approach uses the AO system’s deformable mirror to introduce different diversities, eliminating the need for additional calibration hardware. Furthermore, the optimizer Adam is introduced for the first time in this field to estimate the optical aberrations. To evaluate the performance of this new methodology, a set of experiments under varying operating conditions and optimization parameters has been conducted. Results demonstrated that the presented methodology is capable of providing diffraction-limited corrected images with a Strehl Ratio (SR) exceeding 0.80 within 2 min. Furthermore, employing a Manhattan distance-based error function effectively balanced estimation speed and accuracy. The method demonstrated effectiveness across a wide range of aberration magnitudes, achieving an error of 3 nm in the best scenarios. This proposal represents an advancement in the identification and correction of static aberrations in telescope optical systems, directly improving the acquisition of high-quality references for AO sensing. •Adam proves to be a powerful optimizer for phase diversity methods.•Batch diversities improves the convergence over complex estimation.•Phase diversity decreases the complexity of adaptive optics calibration techniques.•Deformable mirror expands the horizon to use phase diversity techniques.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2024.115761</doi><orcidid>https://orcid.org/0000-0001-9099-7366</orcidid><orcidid>https://orcid.org/0000-0003-4834-223X</orcidid><orcidid>https://orcid.org/0000-0002-6835-9082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2025-02, Vol.241, p.115761, Article 115761
issn 0263-2241
language eng
recordid cdi_crossref_primary_10_1016_j_measurement_2024_115761
source ScienceDirect Journals
subjects Adaptive optics
Deformable mirror
Phase diversity
Static aberrations
Telescope instrumentation
Wavefront sensing
title Advanced Phase Diversity Method for telescope static aberration compensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Phase%20Diversity%20Method%20for%20telescope%20static%20aberration%20compensation&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Rodr%C3%ADguez-Linares,%20Nicol%C3%A1s&rft.date=2025-02-01&rft.volume=241&rft.spage=115761&rft.pages=115761-&rft.artnum=115761&rft.issn=0263-2241&rft_id=info:doi/10.1016/j.measurement.2024.115761&rft_dat=%3Celsevier_cross%3ES0263224124016464%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-f61b94f40bfadf256284bebb1d80257727880f94826f43c8e348d433cc19d3913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true