Loading…

Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system

This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Ne...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2025-01, Vol.242, p.116116, Article 116116
Main Authors: Huang, Mei, Sheng, Chenxing, Rao, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293
container_end_page
container_issue
container_start_page 116116
container_title Measurement : journal of the International Measurement Confederation
container_volume 242
creator Huang, Mei
Sheng, Chenxing
Rao, Xiang
description This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions. •A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.
doi_str_mv 10.1016/j.measurement.2024.116116
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2024_116116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224124020013</els_id><sourcerecordid>S0263224124020013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhbMAiVK4gzlAgu24brusIv6kSmyArTWxx61LYle2W9QrcGpS2gVLpJHmSW_e0-grijtGK0aZvN9UPULaRezR54pTLirG5DAXxYhyWZecC3ZVXKe0oZTKei5HxXcTvHHZBQ8d-YDo4KwXuxzQ62AwEvCGrNBjHMw9EjB7jOl42xGP-SvEz7KFhIbAdhsD6DWxIZIu-FWZwXWDYWHXZWIcrHxILv36eY2kD3lQ6ZAy9jfFpYUu4e15j4v3x4e35rlcvj69NItlqRmjsuTScCZA1kwLam1tsDbQCtS8nQmr2aw1jIsJSE1rPbHcUKanNUwBZ1NB-bweF_NTr44hpYhWbaPrIR4Uo-oIUm3UH5DqCFKdQA7Z5pTF4cG9w6iSdgMmNC6izsoE94-WH6ZfiQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><source>ScienceDirect Freedom Collection</source><creator>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</creator><creatorcontrib>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</creatorcontrib><description>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions. •A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</description><identifier>ISSN: 0263-2241</identifier><identifier>DOI: 10.1016/j.measurement.2024.116116</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Conditional variational autoencoder ; Fault diagnosis ; Generative adversarial networks ; Long-tailed distribution ; Motor</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2025-01, Vol.242, p.116116, Article 116116</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</cites><orcidid>0000-0002-5550-1959 ; 0009-0002-3729-6442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Sheng, Chenxing</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><title>Measurement : journal of the International Measurement Confederation</title><description>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions. •A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</description><subject>Conditional variational autoencoder</subject><subject>Fault diagnosis</subject><subject>Generative adversarial networks</subject><subject>Long-tailed distribution</subject><subject>Motor</subject><issn>0263-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhbMAiVK4gzlAgu24brusIv6kSmyArTWxx61LYle2W9QrcGpS2gVLpJHmSW_e0-grijtGK0aZvN9UPULaRezR54pTLirG5DAXxYhyWZecC3ZVXKe0oZTKei5HxXcTvHHZBQ8d-YDo4KwXuxzQ62AwEvCGrNBjHMw9EjB7jOl42xGP-SvEz7KFhIbAdhsD6DWxIZIu-FWZwXWDYWHXZWIcrHxILv36eY2kD3lQ6ZAy9jfFpYUu4e15j4v3x4e35rlcvj69NItlqRmjsuTScCZA1kwLam1tsDbQCtS8nQmr2aw1jIsJSE1rPbHcUKanNUwBZ1NB-bweF_NTr44hpYhWbaPrIR4Uo-oIUm3UH5DqCFKdQA7Z5pTF4cG9w6iSdgMmNC6izsoE94-WH6ZfiQY</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Huang, Mei</creator><creator>Sheng, Chenxing</creator><creator>Rao, Xiang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5550-1959</orcidid><orcidid>https://orcid.org/0009-0002-3729-6442</orcidid></search><sort><creationdate>202501</creationdate><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><author>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Conditional variational autoencoder</topic><topic>Fault diagnosis</topic><topic>Generative adversarial networks</topic><topic>Long-tailed distribution</topic><topic>Motor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Sheng, Chenxing</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mei</au><au>Sheng, Chenxing</au><au>Rao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2025-01</date><risdate>2025</risdate><volume>242</volume><spage>116116</spage><pages>116116-</pages><artnum>116116</artnum><issn>0263-2241</issn><abstract>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions. •A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2024.116116</doi><orcidid>https://orcid.org/0000-0002-5550-1959</orcidid><orcidid>https://orcid.org/0009-0002-3729-6442</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2025-01, Vol.242, p.116116, Article 116116
issn 0263-2241
language eng
recordid cdi_crossref_primary_10_1016_j_measurement_2024_116116
source ScienceDirect Freedom Collection
subjects Conditional variational autoencoder
Fault diagnosis
Generative adversarial networks
Long-tailed distribution
Motor
title Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Variational%20Autoencoder%20and%20generative%20adversarial%20network-based%20approach%20for%20long-tailed%20fault%20diagnosis%20for%20the%20motor%20system&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Huang,%20Mei&rft.date=2025-01&rft.volume=242&rft.spage=116116&rft.pages=116116-&rft.artnum=116116&rft.issn=0263-2241&rft_id=info:doi/10.1016/j.measurement.2024.116116&rft_dat=%3Celsevier_cross%3ES0263224124020013%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true