Loading…
Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system
This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Ne...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation 2025-01, Vol.242, p.116116, Article 116116 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293 |
container_end_page | |
container_issue | |
container_start_page | 116116 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 242 |
creator | Huang, Mei Sheng, Chenxing Rao, Xiang |
description | This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions.
•A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases. |
doi_str_mv | 10.1016/j.measurement.2024.116116 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_measurement_2024_116116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224124020013</els_id><sourcerecordid>S0263224124020013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhbMAiVK4gzlAgu24brusIv6kSmyArTWxx61LYle2W9QrcGpS2gVLpJHmSW_e0-grijtGK0aZvN9UPULaRezR54pTLirG5DAXxYhyWZecC3ZVXKe0oZTKei5HxXcTvHHZBQ8d-YDo4KwXuxzQ62AwEvCGrNBjHMw9EjB7jOl42xGP-SvEz7KFhIbAdhsD6DWxIZIu-FWZwXWDYWHXZWIcrHxILv36eY2kD3lQ6ZAy9jfFpYUu4e15j4v3x4e35rlcvj69NItlqRmjsuTScCZA1kwLam1tsDbQCtS8nQmr2aw1jIsJSE1rPbHcUKanNUwBZ1NB-bweF_NTr44hpYhWbaPrIR4Uo-oIUm3UH5DqCFKdQA7Z5pTF4cG9w6iSdgMmNC6izsoE94-WH6ZfiQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><source>ScienceDirect Freedom Collection</source><creator>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</creator><creatorcontrib>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</creatorcontrib><description>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions.
•A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</description><identifier>ISSN: 0263-2241</identifier><identifier>DOI: 10.1016/j.measurement.2024.116116</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Conditional variational autoencoder ; Fault diagnosis ; Generative adversarial networks ; Long-tailed distribution ; Motor</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2025-01, Vol.242, p.116116, Article 116116</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</cites><orcidid>0000-0002-5550-1959 ; 0009-0002-3729-6442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Sheng, Chenxing</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><title>Measurement : journal of the International Measurement Confederation</title><description>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions.
•A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</description><subject>Conditional variational autoencoder</subject><subject>Fault diagnosis</subject><subject>Generative adversarial networks</subject><subject>Long-tailed distribution</subject><subject>Motor</subject><issn>0263-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhbMAiVK4gzlAgu24brusIv6kSmyArTWxx61LYle2W9QrcGpS2gVLpJHmSW_e0-grijtGK0aZvN9UPULaRezR54pTLirG5DAXxYhyWZecC3ZVXKe0oZTKei5HxXcTvHHZBQ8d-YDo4KwXuxzQ62AwEvCGrNBjHMw9EjB7jOl42xGP-SvEz7KFhIbAdhsD6DWxIZIu-FWZwXWDYWHXZWIcrHxILv36eY2kD3lQ6ZAy9jfFpYUu4e15j4v3x4e35rlcvj69NItlqRmjsuTScCZA1kwLam1tsDbQCtS8nQmr2aw1jIsJSE1rPbHcUKanNUwBZ1NB-bweF_NTr44hpYhWbaPrIR4Uo-oIUm3UH5DqCFKdQA7Z5pTF4cG9w6iSdgMmNC6izsoE94-WH6ZfiQY</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Huang, Mei</creator><creator>Sheng, Chenxing</creator><creator>Rao, Xiang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5550-1959</orcidid><orcidid>https://orcid.org/0009-0002-3729-6442</orcidid></search><sort><creationdate>202501</creationdate><title>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</title><author>Huang, Mei ; Sheng, Chenxing ; Rao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Conditional variational autoencoder</topic><topic>Fault diagnosis</topic><topic>Generative adversarial networks</topic><topic>Long-tailed distribution</topic><topic>Motor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Sheng, Chenxing</creatorcontrib><creatorcontrib>Rao, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mei</au><au>Sheng, Chenxing</au><au>Rao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2025-01</date><risdate>2025</risdate><volume>242</volume><spage>116116</spage><pages>116116-</pages><artnum>116116</artnum><issn>0263-2241</issn><abstract>This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions.
•A novel method is proposed for long-tailed fault diagnosis of the motor system.•A data augmentation-boosted method based on CVAE and GAN is proposed.•The mean feature matching loss and pairwise feature matching loss are introduced.•The LT-CVAE-GAN performs robust across four long-tailed cases.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2024.116116</doi><orcidid>https://orcid.org/0000-0002-5550-1959</orcidid><orcidid>https://orcid.org/0009-0002-3729-6442</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2025-01, Vol.242, p.116116, Article 116116 |
issn | 0263-2241 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_measurement_2024_116116 |
source | ScienceDirect Freedom Collection |
subjects | Conditional variational autoencoder Fault diagnosis Generative adversarial networks Long-tailed distribution Motor |
title | Conditional Variational Autoencoder and generative adversarial network-based approach for long-tailed fault diagnosis for the motor system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Variational%20Autoencoder%20and%20generative%20adversarial%20network-based%20approach%20for%20long-tailed%20fault%20diagnosis%20for%20the%20motor%20system&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Huang,%20Mei&rft.date=2025-01&rft.volume=242&rft.spage=116116&rft.pages=116116-&rft.artnum=116116&rft.issn=0263-2241&rft_id=info:doi/10.1016/j.measurement.2024.116116&rft_dat=%3Celsevier_cross%3ES0263224124020013%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1106-26d214a631c40ff3de3dab4ec2b84fc18bd1245a6c03c5f2d01c73a7ae8740293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |