Loading…

Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages

This paper proposes a new damping control approach with positive acceleration, velocity and position feedback (PAVPF) scheme for piezo-actuated nanopositioning stages to implement high-bandwidth operation. To achieve this objective, the intrinsic hysteresis nonlinearity of the piezoelectric actuator...

Full description

Saved in:
Bibliographic Details
Published in:Mechatronics (Oxford) 2017-11, Vol.47, p.97-104
Main Authors: Li, Linlin, Li, Chun-Xia, Gu, Guoying, Zhu, Li-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new damping control approach with positive acceleration, velocity and position feedback (PAVPF) scheme for piezo-actuated nanopositioning stages to implement high-bandwidth operation. To achieve this objective, the intrinsic hysteresis nonlinearity of the piezoelectric actuator is firstly handled by a feedforward compensator with a modified Prandtl–Ishlinskii model. Afterwards, the PAVPF controller with the pole-placement method is implemented to suppress the lightly damped resonant mode of the hysteresis compensated system. With the PAVPF controller, the poles of the damped system in a third-model can be placed to arbitrary positions with an analytical method. Finally, for accurately tracking a predefined trajectory, a high-gain proportional-integral (PI) controller is designed, which could deal with the disturbance and the unmodeled dynamics. For verifying the proposed PAVPF-based control approach, comparative experiments with positive velocity and position feedback controller and with PI controller are conducted on a piezo-actuated nanopositioning stage. Experimental results demonstrate that the developed control approach with PAVPF controller is effective on damping control and improves the control bandwidth of the conventional PI controller from 111 Hz to 766 Hz, which leads to the significant increase of the tracking speed.
ISSN:0957-4158
1873-4006
DOI:10.1016/j.mechatronics.2017.09.003