Loading…

Influence of post deposition annealing on Y2O3-gated GaAs MOS capacitors and their reliability issues

The feasibility of employing yttrium oxide (Y2O3) as high-k gate dielectrics for GaAs metal-oxide-semiconductor (MOS) devices has been investigated. MOS capacitors were fabricated using RF-sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate. Indeed high-k (Y2O3)/GaAs MOS capacitors exhi...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronic engineering 2011-03, Vol.88 (3), p.282-286
Main Authors: Das, P.S., Biswas, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The feasibility of employing yttrium oxide (Y2O3) as high-k gate dielectrics for GaAs metal-oxide-semiconductor (MOS) devices has been investigated. MOS capacitors were fabricated using RF-sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate. Indeed high-k (Y2O3)/GaAs MOS capacitors exhibiting fairly good electrical characteristics, for instance, especially low leakage current density, low hysteresis and allowable density of interface states, have been achieved. The effects of several annealing treatments on Y2O3-gated GaAs MOS capacitors have been investigated in order to optimize the process conditions. A decrease in accumulation capacitance (Cacc) following PDA effectively increases the equivalent oxide thickness (EOT), which is predicted to be correlated with the growth and continuous increase in the physical thickness of a lower-k inter-layer sandwiched between Y2O3 and GaAs. However, leakage currents and interface trap densities are reduced with higher values of annealing temperature. The variation of current density with an equivalent oxide thickness (EOT) has also been investigated.
ISSN:0167-9317
1873-5568
DOI:10.1016/j.mee.2010.11.022