Loading…
TCAD study on gate-all-around cylindrical (GAAC) transistor for CMOS scaling to the end of the roadmap
In this paper, we report TCAD study on gate-all-around cylindrical (GAAC) transistor for sub-10-nm scaling. The GAAC transistor device physics, TCAD simulation, and proposed fabrication procedure have been discussed. Among all other novel fin field effect transistor (FinFET) devices, the gate-all-ar...
Saved in:
Published in: | Microelectronics 2009-12, Vol.40 (12), p.1766-1771 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report TCAD study on gate-all-around cylindrical (GAAC) transistor for sub-10-nm scaling. The GAAC transistor device physics, TCAD simulation, and proposed fabrication procedure have been discussed. Among all other novel fin field effect transistor (FinFET) devices, the gate-all-around cylindrical device can be particularly used for reducing the problems of conventional multi-gate FinFET, improving device performance, and scaling-down capabilities. With gate-all-around cylindrical architecture, the transistor is controlled essentially by infinite number of gates surrounding the entire cylinder-shaped channel. Electrical integrity within the channel is improved by reducing the leakage current due to the non-symmetrical field accumulation such as the corner effect. Our proposed fabrication procedure for making devices having the gate-all-around cylindrical (GAAC) device architecture is also discussed. |
---|---|
ISSN: | 1879-2391 1879-2391 |
DOI: | 10.1016/j.mejo.2009.09.008 |