Loading…

Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling

This study establishes a unit cell model of thermal-mechanical coupling of 3D chip thermal through-silicon via (TTSV), and conducts optimization study under the constraints of the given ratio of total unit cell volume to TTSV volume. A single-degree-of-freedom optimization study with TTSV spacing as...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronics 2023-04, Vol.134, p.105723, Article 105723
Main Authors: Guan, Xiaonan, Xi, Kun, Xie, Zhihui, Zhang, Jian, Lu, Zhuoqun, Ge, Yanlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863
cites cdi_FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863
container_end_page
container_issue
container_start_page 105723
container_title Microelectronics
container_volume 134
creator Guan, Xiaonan
Xi, Kun
Xie, Zhihui
Zhang, Jian
Lu, Zhuoqun
Ge, Yanlin
description This study establishes a unit cell model of thermal-mechanical coupling of 3D chip thermal through-silicon via (TTSV), and conducts optimization study under the constraints of the given ratio of total unit cell volume to TTSV volume. A single-degree-of-freedom optimization study with TTSV spacing as the design variable was first carried out to analyze the impact laws of heat flow density in the hot spot region, TTSV filling material and volume share on the optimal structure and maximum temperature. The results of the two-degree-of-freedom optimization with TTSV spacing and TTSV array rotation angle as design variables were further investigated to determine the distribution of thermal stresses. The maximum temperature of the cell decreases and then increases with the increase in the TTSV pitch, regardless of the rotation angle of the TTSV array, and there exists a minimum value. The higher the temperature, the higher the thermal stress. Thermal stress is always concentrated in the inner and edge regions of the TTSV.
doi_str_mv 10.1016/j.mejo.2023.105723
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mejo_2023_105723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026269223000368</els_id><sourcerecordid>S0026269223000368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8Ayl-xE0isUEtL6kSG1hbjjNuJkrqyE4rwdeTKF2wYnVn5s4ZjS4h95ytOOPrh2bVQeNXggk5DlQm5AVZ8DwrEiELfvmnviY3MTaMTUvpguy3GIeA5XFAf6C-H7DDHzM3jg41hM60owZ_3NdJxBbtaJ3QUOcDlVtqa-xpaSJUdDTOQNKBrc0BLbX-2Ld42N-SK2faCHdnXZKvl-fPzVuy-3h93zztEiskGxJnUlakPGNKSuGEAhDAVZaCK1KXKaGUyooiS6WtDPCKS1WWShZ5zirnbL6WSyLmuzb4GAM43QfsTPjWnOkpKt3oKSo9RaXnqEbocYZg_OyEEHS0CAcLFQawg648_of_AsWoc10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling</title><source>ScienceDirect Freedom Collection</source><creator>Guan, Xiaonan ; Xi, Kun ; Xie, Zhihui ; Zhang, Jian ; Lu, Zhuoqun ; Ge, Yanlin</creator><creatorcontrib>Guan, Xiaonan ; Xi, Kun ; Xie, Zhihui ; Zhang, Jian ; Lu, Zhuoqun ; Ge, Yanlin</creatorcontrib><description>This study establishes a unit cell model of thermal-mechanical coupling of 3D chip thermal through-silicon via (TTSV), and conducts optimization study under the constraints of the given ratio of total unit cell volume to TTSV volume. A single-degree-of-freedom optimization study with TTSV spacing as the design variable was first carried out to analyze the impact laws of heat flow density in the hot spot region, TTSV filling material and volume share on the optimal structure and maximum temperature. The results of the two-degree-of-freedom optimization with TTSV spacing and TTSV array rotation angle as design variables were further investigated to determine the distribution of thermal stresses. The maximum temperature of the cell decreases and then increases with the increase in the TTSV pitch, regardless of the rotation angle of the TTSV array, and there exists a minimum value. The higher the temperature, the higher the thermal stress. Thermal stress is always concentrated in the inner and edge regions of the TTSV.</description><identifier>ISSN: 1879-2391</identifier><identifier>EISSN: 1879-2391</identifier><identifier>DOI: 10.1016/j.mejo.2023.105723</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>3D chip ; Electronics cooling ; Multi-physics field coupling ; Thermal design ; Thermal through-silicon via</subject><ispartof>Microelectronics, 2023-04, Vol.134, p.105723, Article 105723</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863</citedby><cites>FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863</cites><orcidid>0000-0002-7045-648X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guan, Xiaonan</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Xie, Zhihui</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Lu, Zhuoqun</creatorcontrib><creatorcontrib>Ge, Yanlin</creatorcontrib><title>Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling</title><title>Microelectronics</title><description>This study establishes a unit cell model of thermal-mechanical coupling of 3D chip thermal through-silicon via (TTSV), and conducts optimization study under the constraints of the given ratio of total unit cell volume to TTSV volume. A single-degree-of-freedom optimization study with TTSV spacing as the design variable was first carried out to analyze the impact laws of heat flow density in the hot spot region, TTSV filling material and volume share on the optimal structure and maximum temperature. The results of the two-degree-of-freedom optimization with TTSV spacing and TTSV array rotation angle as design variables were further investigated to determine the distribution of thermal stresses. The maximum temperature of the cell decreases and then increases with the increase in the TTSV pitch, regardless of the rotation angle of the TTSV array, and there exists a minimum value. The higher the temperature, the higher the thermal stress. Thermal stress is always concentrated in the inner and edge regions of the TTSV.</description><subject>3D chip</subject><subject>Electronics cooling</subject><subject>Multi-physics field coupling</subject><subject>Thermal design</subject><subject>Thermal through-silicon via</subject><issn>1879-2391</issn><issn>1879-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8Ayl-xE0isUEtL6kSG1hbjjNuJkrqyE4rwdeTKF2wYnVn5s4ZjS4h95ytOOPrh2bVQeNXggk5DlQm5AVZ8DwrEiELfvmnviY3MTaMTUvpguy3GIeA5XFAf6C-H7DDHzM3jg41hM60owZ_3NdJxBbtaJ3QUOcDlVtqa-xpaSJUdDTOQNKBrc0BLbX-2Ld42N-SK2faCHdnXZKvl-fPzVuy-3h93zztEiskGxJnUlakPGNKSuGEAhDAVZaCK1KXKaGUyooiS6WtDPCKS1WWShZ5zirnbL6WSyLmuzb4GAM43QfsTPjWnOkpKt3oKSo9RaXnqEbocYZg_OyEEHS0CAcLFQawg648_of_AsWoc10</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Guan, Xiaonan</creator><creator>Xi, Kun</creator><creator>Xie, Zhihui</creator><creator>Zhang, Jian</creator><creator>Lu, Zhuoqun</creator><creator>Ge, Yanlin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7045-648X</orcidid></search><sort><creationdate>202304</creationdate><title>Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling</title><author>Guan, Xiaonan ; Xi, Kun ; Xie, Zhihui ; Zhang, Jian ; Lu, Zhuoqun ; Ge, Yanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D chip</topic><topic>Electronics cooling</topic><topic>Multi-physics field coupling</topic><topic>Thermal design</topic><topic>Thermal through-silicon via</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xiaonan</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Xie, Zhihui</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Lu, Zhuoqun</creatorcontrib><creatorcontrib>Ge, Yanlin</creatorcontrib><collection>CrossRef</collection><jtitle>Microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xiaonan</au><au>Xi, Kun</au><au>Xie, Zhihui</au><au>Zhang, Jian</au><au>Lu, Zhuoqun</au><au>Ge, Yanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling</atitle><jtitle>Microelectronics</jtitle><date>2023-04</date><risdate>2023</risdate><volume>134</volume><spage>105723</spage><pages>105723-</pages><artnum>105723</artnum><issn>1879-2391</issn><eissn>1879-2391</eissn><abstract>This study establishes a unit cell model of thermal-mechanical coupling of 3D chip thermal through-silicon via (TTSV), and conducts optimization study under the constraints of the given ratio of total unit cell volume to TTSV volume. A single-degree-of-freedom optimization study with TTSV spacing as the design variable was first carried out to analyze the impact laws of heat flow density in the hot spot region, TTSV filling material and volume share on the optimal structure and maximum temperature. The results of the two-degree-of-freedom optimization with TTSV spacing and TTSV array rotation angle as design variables were further investigated to determine the distribution of thermal stresses. The maximum temperature of the cell decreases and then increases with the increase in the TTSV pitch, regardless of the rotation angle of the TTSV array, and there exists a minimum value. The higher the temperature, the higher the thermal stress. Thermal stress is always concentrated in the inner and edge regions of the TTSV.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mejo.2023.105723</doi><orcidid>https://orcid.org/0000-0002-7045-648X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1879-2391
ispartof Microelectronics, 2023-04, Vol.134, p.105723, Article 105723
issn 1879-2391
1879-2391
language eng
recordid cdi_crossref_primary_10_1016_j_mejo_2023_105723
source ScienceDirect Freedom Collection
subjects 3D chip
Electronics cooling
Multi-physics field coupling
Thermal design
Thermal through-silicon via
title Distribution optimization of thermal through-silicon via for 3D chip based on thermal-mechanic coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20optimization%20of%20thermal%20through-silicon%20via%20for%203D%20chip%20based%20on%20thermal-mechanic%20coupling&rft.jtitle=Microelectronics&rft.au=Guan,%20Xiaonan&rft.date=2023-04&rft.volume=134&rft.spage=105723&rft.pages=105723-&rft.artnum=105723&rft.issn=1879-2391&rft.eissn=1879-2391&rft_id=info:doi/10.1016/j.mejo.2023.105723&rft_dat=%3Celsevier_cross%3ES0026269223000368%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-fa40941705332f25ee2e1574ef94f752555799743cdae1d135bb539880dffc863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true