Loading…

Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells

Nafion/silicon oxide (SiO 2)/phosphotungstic acid (PWA) and Nafion/silicon oxide composite membranes were studied for the H 2/O 2 proton exchange membrane fuel cells (PEMFCs) operated above 100 °C. The composite membranes were prepared by the recasting procedure, using Nafion solution mixed with SiO...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science 2004-02, Vol.229 (1), p.43-51
Main Authors: Shao, Zhi-Gang, Joghee, Prabhuram, Hsing, I-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nafion/silicon oxide (SiO 2)/phosphotungstic acid (PWA) and Nafion/silicon oxide composite membranes were studied for the H 2/O 2 proton exchange membrane fuel cells (PEMFCs) operated above 100 °C. The composite membranes were prepared by the recasting procedure, using Nafion solution mixed with SiO 2 and PWA/SiO 2 mixtures. The physico-chemical properties of these recast composite membranes were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, thermogravimetry-DTA (TG-DTA) and Fourier transform infrared (FTIR) spectroscopy. These results showed that SiO 2 and PWA are compatible with the Nafion membrane. Furthermore, the incorporation of the SiO 2 and PWA into the Nafion membrane could increase the crystallinity of the Nafion recast membrane and also improve the initial degradation temperature of the Nafion membrane. It was found that the composite membrane showed a higher uptake of water compared with the Nafion recast membrane. The proton conductivity of the composite membranes appeared to be similar to that of the native Nafion membrane at high temperatures and at 100% relative humidity (RH), however, it was much higher at low RH. When the composite membranes viz. Nafion/SiO 2/PWA and Nafion/SiO 2 were employed as an electrolyte in H 2/O 2 PEMFC, the higher current density values (540 and 320 mA/cm 2 at 0.4 V, respectively) were obtained than that of the Nafion 115 membrane (95 mA/cm 2), under the operating condition of 110 °C and at the humidified temperature of 100 °C.
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2003.09.014