Loading…

Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches

Membrane biofouling refers to the undesirable accumulation (attachment and growth) of microorganisms on a membrane surface, and has been a major problem in the application of membrane technology in water and wastewater treatment. In this study, the surface of a base membrane made of chitosan/cellulo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science 2010, Vol.346 (1), p.121-130
Main Authors: Liu, C.X., Zhang, D.R., He, Yi, Zhao, X.S., Bai, Renbi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane biofouling refers to the undesirable accumulation (attachment and growth) of microorganisms on a membrane surface, and has been a major problem in the application of membrane technology in water and wastewater treatment. In this study, the surface of a base membrane made of chitosan/cellulose acetate blend was modified by reacting with heparin, quaternary ammonium or being immobilized with silver ions. The purpose of the modifications was to increase the surface hydrophilicity, alter the surface charge property or endue the surface with anti-bacteria function. The modified membranes were then examined for their anti-biofouling performance in terms of the anti-adhesion and anti-bacteria effects, with Escherichia coli pure culture and mixed culture bacteria in a bioreactor that simulated the activated sludge wastewater treatment process. The results clearly show that the hydrophilicity of a membrane, although important, is not an effective indicator for the tendency of membrane biofouling but the nature of the surface charges of the membrane also plays a very important role. It was found that the anti-adhesion approach that prevents the initial attachment of bacteria on a membrane surface is a more effective method than the anti-bacteria approach that aims at killing bacteria already attached on the membrane surface. The best performance for minimizing membrane biofouling has, however, been realized through a modified membrane surface that has effective anti-adhesion property plus additional anti-bacteria function, with the latter as a safe guard in case some bacteria do attach to the surface of a membrane.
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2009.09.028