Loading…

Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries

A commercial porous polyvinylidene fluoride membrane (pore size 0.65 μm, nominally 125 μm thick) is spray coated with 1.2–4 μm thick layers of polybenzimidazole. The area resistance of the porous support is 36.4 mΩ cm2 in 2 M sulfuric acid, in comparison to 540 mΩ cm2 for a 27 μm thick acid doped po...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science 2019-12, Vol.591, p.117333, Article 117333
Main Authors: Lee, Wonmi, Jung, Mina, Serhiichuk, Dmytro, Noh, Chanho, Gupta, Gaurav, Harms, Corinna, Kwon, Yongchai, Henkensmeier, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A commercial porous polyvinylidene fluoride membrane (pore size 0.65 μm, nominally 125 μm thick) is spray coated with 1.2–4 μm thick layers of polybenzimidazole. The area resistance of the porous support is 36.4 mΩ cm2 in 2 M sulfuric acid, in comparison to 540 mΩ cm2 for a 27 μm thick acid doped polybenzimidazole membrane, and 124 mΩ cm2 for PVDF-P20 (4 μm thick blocking layer). Addition of vanadium ions to the supporting electrolyte increases the resistance, but less than for Nafion. The expected reason is a change in the osmotic pressure when the ionic strength of the electrolyte is increased, reducing the water contents in the membrane. The orientation of the composite membranes has a strong impact. Lower permeability values are found when the blocking layer is oriented towards the vanadium-lean side in ex-situ measurements. Cells with the blocking layer on the positive side have significantly lower capacity fade, also much lower than cells using Nafion 212. The coulombic efficiency of cells with PVDF-PBI membranes (98.4%) is higher than that of cells using Nafion 212 (93.6%), whereas the voltage efficiency is just slightly lower, resulting in energy efficiencies of 85.1 and 83.3%, respectively, at 80 mA/cm2. [Display omitted] •1.2–4 μm thick polybenzimidazole films supported by porous PVDF membranes are made.•Resistances of 27 μm thick PBI and PVDF/4  μm PBI are 560 and 124 mΩ cm2, respectively.•The orientation of the PBI layer in the VRFB has a major impact on the capacity retention.•Capacity fade is lowest when PBI is oriented towards the positive electrode.•Coulomb and energy efficiency (98 and 85%) exceed those of Nafion 212 (94 and 83%).
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2019.117333