Loading…
A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes
This study explores the antifouling properties of membranes dip-coated with a copolymer formed by zwitterionization of poly(styrene-r-4-vinylpyridine), zP(S-r-4VP). 3 copolymers having a different chain length were produced. The NMR analysis showed that the styrene/4-vinylpyridine molar ratio was co...
Saved in:
Published in: | Journal of membrane science 2020-03, Vol.598, p.117655, Article 117655 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study explores the antifouling properties of membranes dip-coated with a copolymer formed by zwitterionization of poly(styrene-r-4-vinylpyridine), zP(S-r-4VP). 3 copolymers having a different chain length were produced. The NMR analysis showed that the styrene/4-vinylpyridine molar ratio was controlled to 64/36, while XPS tests revealed that the zwitterionization degree ranged between 70% and 80%. Physicochemical evidence was collected proving the efficient coating of zP(S-r-4VP), which in turn provided the membranes with excellent resistance to protein (90% reduction), bacteria (98% reduction) and cells from whole blood (98% reduction) in static condition. Besides, a flux recovery ratio of 50% was obtained after BSA/water cyclic filtration while it was as low as 19% with a commercial hydrophilic membrane in similar conditions. Notably, and unlike with poly(sulfobetaine methacrylate) coatings (PSBMA), steam-sterilization of zP(S-r-4VP)-coated membranes does not alter the antifouling capability of membranes. This novel copolymer not only competes with traditional PSBMA, but outperforms it when sterilization is required, which can be a serious advantage in biomedical applications of membranes.
[Display omitted]
•A thermostable zwitterionic copolymer is synthesized and characterized.•Zwitterionic PVDF membranes are prepared and fully characterized.•Membranes display high resistance to biofouling in versatile situations.•Membranes retain their anti-biofouling properties after sterilization.•The zwitterionic membranes outperform commercial one during filtration. |
---|---|
ISSN: | 0376-7388 1873-3123 |
DOI: | 10.1016/j.memsci.2019.117655 |