Loading…
Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis
The support layer of an asymmetric thin-film composite membrane results in structural resistance (internal concentration polarization) that significantly undermines engineered osmosis. Increasing the porosity and reducing the thickness and tortuosity of the membrane support layer reduces structural...
Saved in:
Published in: | Journal of membrane science 2020-07, Vol.607, p.118145, Article 118145 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143 |
container_end_page | |
container_issue | |
container_start_page | 118145 |
container_title | Journal of membrane science |
container_volume | 607 |
creator | Phuntsho, Sherub Kim, Jung Eun Tran, Van Huy Tahara, Shuji Uehara, Naoki Maruko, Nobuhiro Matsuno, Hirozumi Lim, Sungil Shon, Ho Kyong |
description | The support layer of an asymmetric thin-film composite membrane results in structural resistance (internal concentration polarization) that significantly undermines engineered osmosis. Increasing the porosity and reducing the thickness and tortuosity of the membrane support layer reduces structural resistance; however, internal concentration polarization still impacts membrane performance. A novel, ultrathin, free-standing and symmetric membrane has been synthesized using sulfonated polyether ketone and tested for forward osmosis applications. This membrane is composed of a protonic acid group containing an aromatic polyether resin with sulfonated structural units. Polyether ketone provides high mechanical strength essential for ultrathin free-standing membranes, while sulfonation enhances the membrane hydrophilicity. These sulfonated polyether ketone membranes show promising water flux performances with impressive mechanical strength under the hydraulic operating conditions used for a FO process.
•Ultrathin and free-standing FO membrane was synthesized using SPEK polymer.•0.6 μm thick membrane showed FO water flux of 20.5 Lm−2h−1 with 1 M NaCl: DI.•The specific reverse solute flux of this 0.6 μm thick membrane was 1.2 gL-1.•Free-standing SPEK film exhibited adequate mechanical strength for FO operations.•Embedding polyester mesh enhanced mechanical strength without impacting FO water flux. |
doi_str_mv | 10.1016/j.memsci.2020.118145 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_memsci_2020_118145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738820307237</els_id><sourcerecordid>S0376738820307237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEN-QLNOPja79SBIsSoUveg5ZLOTmtLNSrKI_fduWcGbp4GZ930YHkKuORQcuL7ZFR122YVCgBhXvOaqPCEzXleSSS7kKZmBrDSrZF2fk4ucdwC8gno5I2adEFkebGxD3C7o8BEi82HfLWg-dB0OKTg60ptkI-Zb-oLfA9tixGSH0Me_E_V9ohi3ISImbGmfuz6HfEnOvN1nvPqdc_K-fnhbPbHN6-Pz6n7DnAQ9MCm0Bt76pXai0VBJLHmlhHKOO7ssFTYcGl8JQLQKNDjfaKFkCbIpfcmVnBM1cV3qc07ozWcKnU0Hw8EcJZmdmSSZoyQzSRprd1MNx9--AiYzJjA6bENCN5i2D_8DfgCRu3Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis</title><source>ScienceDirect Journals</source><creator>Phuntsho, Sherub ; Kim, Jung Eun ; Tran, Van Huy ; Tahara, Shuji ; Uehara, Naoki ; Maruko, Nobuhiro ; Matsuno, Hirozumi ; Lim, Sungil ; Shon, Ho Kyong</creator><creatorcontrib>Phuntsho, Sherub ; Kim, Jung Eun ; Tran, Van Huy ; Tahara, Shuji ; Uehara, Naoki ; Maruko, Nobuhiro ; Matsuno, Hirozumi ; Lim, Sungil ; Shon, Ho Kyong</creatorcontrib><description>The support layer of an asymmetric thin-film composite membrane results in structural resistance (internal concentration polarization) that significantly undermines engineered osmosis. Increasing the porosity and reducing the thickness and tortuosity of the membrane support layer reduces structural resistance; however, internal concentration polarization still impacts membrane performance. A novel, ultrathin, free-standing and symmetric membrane has been synthesized using sulfonated polyether ketone and tested for forward osmosis applications. This membrane is composed of a protonic acid group containing an aromatic polyether resin with sulfonated structural units. Polyether ketone provides high mechanical strength essential for ultrathin free-standing membranes, while sulfonation enhances the membrane hydrophilicity. These sulfonated polyether ketone membranes show promising water flux performances with impressive mechanical strength under the hydraulic operating conditions used for a FO process.
•Ultrathin and free-standing FO membrane was synthesized using SPEK polymer.•0.6 μm thick membrane showed FO water flux of 20.5 Lm−2h−1 with 1 M NaCl: DI.•The specific reverse solute flux of this 0.6 μm thick membrane was 1.2 gL-1.•Free-standing SPEK film exhibited adequate mechanical strength for FO operations.•Embedding polyester mesh enhanced mechanical strength without impacting FO water flux.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2020.118145</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Desalination ; Engineered osmosis ; Non-polyamide-based membrane ; Self-standing membrane ; Sulfonated poly ether ketone</subject><ispartof>Journal of membrane science, 2020-07, Vol.607, p.118145, Article 118145</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143</citedby><cites>FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143</cites><orcidid>0000-0003-2105-5863 ; 0000-0002-9253-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Phuntsho, Sherub</creatorcontrib><creatorcontrib>Kim, Jung Eun</creatorcontrib><creatorcontrib>Tran, Van Huy</creatorcontrib><creatorcontrib>Tahara, Shuji</creatorcontrib><creatorcontrib>Uehara, Naoki</creatorcontrib><creatorcontrib>Maruko, Nobuhiro</creatorcontrib><creatorcontrib>Matsuno, Hirozumi</creatorcontrib><creatorcontrib>Lim, Sungil</creatorcontrib><creatorcontrib>Shon, Ho Kyong</creatorcontrib><title>Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis</title><title>Journal of membrane science</title><description>The support layer of an asymmetric thin-film composite membrane results in structural resistance (internal concentration polarization) that significantly undermines engineered osmosis. Increasing the porosity and reducing the thickness and tortuosity of the membrane support layer reduces structural resistance; however, internal concentration polarization still impacts membrane performance. A novel, ultrathin, free-standing and symmetric membrane has been synthesized using sulfonated polyether ketone and tested for forward osmosis applications. This membrane is composed of a protonic acid group containing an aromatic polyether resin with sulfonated structural units. Polyether ketone provides high mechanical strength essential for ultrathin free-standing membranes, while sulfonation enhances the membrane hydrophilicity. These sulfonated polyether ketone membranes show promising water flux performances with impressive mechanical strength under the hydraulic operating conditions used for a FO process.
•Ultrathin and free-standing FO membrane was synthesized using SPEK polymer.•0.6 μm thick membrane showed FO water flux of 20.5 Lm−2h−1 with 1 M NaCl: DI.•The specific reverse solute flux of this 0.6 μm thick membrane was 1.2 gL-1.•Free-standing SPEK film exhibited adequate mechanical strength for FO operations.•Embedding polyester mesh enhanced mechanical strength without impacting FO water flux.</description><subject>Desalination</subject><subject>Engineered osmosis</subject><subject>Non-polyamide-based membrane</subject><subject>Self-standing membrane</subject><subject>Sulfonated poly ether ketone</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEN-QLNOPja79SBIsSoUveg5ZLOTmtLNSrKI_fduWcGbp4GZ930YHkKuORQcuL7ZFR122YVCgBhXvOaqPCEzXleSSS7kKZmBrDSrZF2fk4ucdwC8gno5I2adEFkebGxD3C7o8BEi82HfLWg-dB0OKTg60ptkI-Zb-oLfA9tixGSH0Me_E_V9ohi3ISImbGmfuz6HfEnOvN1nvPqdc_K-fnhbPbHN6-Pz6n7DnAQ9MCm0Bt76pXai0VBJLHmlhHKOO7ssFTYcGl8JQLQKNDjfaKFkCbIpfcmVnBM1cV3qc07ozWcKnU0Hw8EcJZmdmSSZoyQzSRprd1MNx9--AiYzJjA6bENCN5i2D_8DfgCRu3Lg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Phuntsho, Sherub</creator><creator>Kim, Jung Eun</creator><creator>Tran, Van Huy</creator><creator>Tahara, Shuji</creator><creator>Uehara, Naoki</creator><creator>Maruko, Nobuhiro</creator><creator>Matsuno, Hirozumi</creator><creator>Lim, Sungil</creator><creator>Shon, Ho Kyong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2105-5863</orcidid><orcidid>https://orcid.org/0000-0002-9253-3693</orcidid></search><sort><creationdate>20200715</creationdate><title>Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis</title><author>Phuntsho, Sherub ; Kim, Jung Eun ; Tran, Van Huy ; Tahara, Shuji ; Uehara, Naoki ; Maruko, Nobuhiro ; Matsuno, Hirozumi ; Lim, Sungil ; Shon, Ho Kyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Desalination</topic><topic>Engineered osmosis</topic><topic>Non-polyamide-based membrane</topic><topic>Self-standing membrane</topic><topic>Sulfonated poly ether ketone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phuntsho, Sherub</creatorcontrib><creatorcontrib>Kim, Jung Eun</creatorcontrib><creatorcontrib>Tran, Van Huy</creatorcontrib><creatorcontrib>Tahara, Shuji</creatorcontrib><creatorcontrib>Uehara, Naoki</creatorcontrib><creatorcontrib>Maruko, Nobuhiro</creatorcontrib><creatorcontrib>Matsuno, Hirozumi</creatorcontrib><creatorcontrib>Lim, Sungil</creatorcontrib><creatorcontrib>Shon, Ho Kyong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phuntsho, Sherub</au><au>Kim, Jung Eun</au><au>Tran, Van Huy</au><au>Tahara, Shuji</au><au>Uehara, Naoki</au><au>Maruko, Nobuhiro</au><au>Matsuno, Hirozumi</au><au>Lim, Sungil</au><au>Shon, Ho Kyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis</atitle><jtitle>Journal of membrane science</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>607</volume><spage>118145</spage><pages>118145-</pages><artnum>118145</artnum><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>The support layer of an asymmetric thin-film composite membrane results in structural resistance (internal concentration polarization) that significantly undermines engineered osmosis. Increasing the porosity and reducing the thickness and tortuosity of the membrane support layer reduces structural resistance; however, internal concentration polarization still impacts membrane performance. A novel, ultrathin, free-standing and symmetric membrane has been synthesized using sulfonated polyether ketone and tested for forward osmosis applications. This membrane is composed of a protonic acid group containing an aromatic polyether resin with sulfonated structural units. Polyether ketone provides high mechanical strength essential for ultrathin free-standing membranes, while sulfonation enhances the membrane hydrophilicity. These sulfonated polyether ketone membranes show promising water flux performances with impressive mechanical strength under the hydraulic operating conditions used for a FO process.
•Ultrathin and free-standing FO membrane was synthesized using SPEK polymer.•0.6 μm thick membrane showed FO water flux of 20.5 Lm−2h−1 with 1 M NaCl: DI.•The specific reverse solute flux of this 0.6 μm thick membrane was 1.2 gL-1.•Free-standing SPEK film exhibited adequate mechanical strength for FO operations.•Embedding polyester mesh enhanced mechanical strength without impacting FO water flux.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2020.118145</doi><orcidid>https://orcid.org/0000-0003-2105-5863</orcidid><orcidid>https://orcid.org/0000-0002-9253-3693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2020-07, Vol.607, p.118145, Article 118145 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_memsci_2020_118145 |
source | ScienceDirect Journals |
subjects | Desalination Engineered osmosis Non-polyamide-based membrane Self-standing membrane Sulfonated poly ether ketone |
title | Free-standing, thin-film, symmetric membranes: Next-generation membranes for engineered osmosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-standing,%20thin-film,%20symmetric%20membranes:%20Next-generation%20membranes%20for%20engineered%20osmosis&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Phuntsho,%20Sherub&rft.date=2020-07-15&rft.volume=607&rft.spage=118145&rft.pages=118145-&rft.artnum=118145&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2020.118145&rft_dat=%3Celsevier_cross%3ES0376738820307237%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-326601df96c2b6073e517424cc1ca954eb10bf720eea4060cfb6243503b5f5143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |