Loading…
On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes
Long-term pH stability is critical for nanofiltration membranes in many applications, e.g. dairy and mining industry. We present a systematic study on the long-term pH stability of four different polyelectrolyte multilayer (PEM) nanofiltration membranes. The stability was assessed by comparing their...
Saved in:
Published in: | Journal of membrane science 2020-12, Vol.615, p.118532, Article 118532 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long-term pH stability is critical for nanofiltration membranes in many applications, e.g. dairy and mining industry. We present a systematic study on the long-term pH stability of four different polyelectrolyte multilayer (PEM) nanofiltration membranes. The stability was assessed by comparing their performance before and after exposure to up to 1 M HNO3 (~pH 0) and 1 M NaOH (~pH 14), in terms of pure water permeance (PWP), salt retention, and molecular weight cut-off (MWCO).
Poly(diallyldimethylammonium chloride) (PDADMAC)/poly(styrenesulfonate) (PSS) nanofiltration membranes show excellent stability under extreme acidic and basic conditions for more than 2 months (10.7 L m−2h−1bar−1 PWP, 95.5% MgSO4 retention, 279 g mol−1 MWCO), attributed to the use of strong polyelectrolytes, of which the charge is unaffected by pH. Poly(allylamine hydrochloride) (PAH)/PSS membranes show stable performance when exposed to extreme acidic conditions (9.7 L m−2h−1bar−1 PWP, 97.5% MgSO4 retention, 249 g mol−1 MWCO). Under these conditions, PAH remains charged and therefore a stable multilayer is maintained. PDADMAC/poly(acrylic acid) (PAA) and PAH/PAA membranes are not stable at extreme pH conditions.
These results highlight that PEM nanofiltration membranes, especially PDADMAC/PSS membranes, have tremendous potential for use at extreme pH conditions. Compared to most commercially available membranes they have superior long-term stability and very relevant performance.
[Display omitted]
•The long-term pH stability of different LbL NF membranes was investigated.•Long-term stability is governed by the PE interactions at the appropriate pH.•PDADMAC/PSS NF membranes show excellent long-term stability from pH 0–14.•PAH/PSS NF membranes show excellent long-term stability at extremely low pH values.•Potential for these membranes in application areas with extreme pH conditions. |
---|---|
ISSN: | 0376-7388 1873-3123 |
DOI: | 10.1016/j.memsci.2020.118532 |