Loading…
Scalable matrix decompositions with multiple cores on FPGAs
Hardware accelerators are getting increasingly important in heterogeneous systems for many applications, including those that employ matrix decompositions. In recent years, a class of tiled matrix decomposition algorithms has been proposed for out-of-memory computations and multi-core architectures...
Saved in:
Published in: | Microprocessors and microsystems 2013-11, Vol.37 (8), p.887-898 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hardware accelerators are getting increasingly important in heterogeneous systems for many applications, including those that employ matrix decompositions. In recent years, a class of tiled matrix decomposition algorithms has been proposed for out-of-memory computations and multi-core architectures including GPU-based heterogeneous systems. However, on FPGAs these scalable solutions for large matrices are rarely found. In this paper we use the latest tiled decomposition algorithms from high performance linear algebra for off-chip memory access and loop mapping on multiple processing cores for on-chip computation to perform scalable and high performance QR and LU matrix decompositions on FPGAs. |
---|---|
ISSN: | 0141-9331 1872-9436 |
DOI: | 10.1016/j.micpro.2012.06.008 |