Loading…

MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system

Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an e...

Full description

Saved in:
Bibliographic Details
Published in:Microprocessors and microsystems 2022-09, Vol.93, p.104568, Article 104568
Main Authors: Xiao, Hang, Qin, Jiayi, Jeon, Seunggil, Yan, Binyu, Yang, Xiaomin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343
cites cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343
container_end_page
container_issue
container_start_page 104568
container_title Microprocessors and microsystems
container_volume 93
creator Xiao, Hang
Qin, Jiayi
Jeon, Seunggil
Yan, Binyu
Yang, Xiaomin
description Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.
doi_str_mv 10.1016/j.micpro.2022.104568
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_micpro_2022_104568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014193312200120X</els_id><sourcerecordid>S014193312200120X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</originalsourceid><addsrcrecordid>eNp9kM1KAzEcxIMoWKtv4CEvsDUfm2TXgyClVWHVi96EsE3-0dT9KEnW2re3dT17mYGBGYYfQpeUzCih8mo9a73ZhH7GCGP7KBeyOEITWiiWlTmXx2hCaE6zknN6is5iXBNCBJFsgt4el4una1z594-0hYPidmiSz6KpG8AO6jQEwPCdQm2S7zschw2ELEDsm-E36CBt-_CJfYehXYG1YHHcxQTtOTpxdRPh4s-n6HW5eJnfZ9Xz3cP8tsoMJzJlvHSSQ10ICXZllVGFqItScmoNcYwQSh2xsuRMUeGYUkJw45Tg1iq3sjznU5SPuyb0MQZwehN8W4edpkQfCOm1HgnpAyE9EtrXbsYa7L99eQg6Gg-dAesDmKRt7_8f-AF7GHJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</creator><creatorcontrib>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</creatorcontrib><description>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2022.104568</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep learning ; Feature fusion ; Multi-scale feature ; Super-resolution</subject><ispartof>Microprocessors and microsystems, 2022-09, Vol.93, p.104568, Article 104568</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</citedby><cites>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Xiao, Hang</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>Jeon, Seunggil</creatorcontrib><creatorcontrib>Yan, Binyu</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><title>Microprocessors and microsystems</title><description>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</description><subject>Deep learning</subject><subject>Feature fusion</subject><subject>Multi-scale feature</subject><subject>Super-resolution</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEcxIMoWKtv4CEvsDUfm2TXgyClVWHVi96EsE3-0dT9KEnW2re3dT17mYGBGYYfQpeUzCih8mo9a73ZhH7GCGP7KBeyOEITWiiWlTmXx2hCaE6zknN6is5iXBNCBJFsgt4el4una1z594-0hYPidmiSz6KpG8AO6jQEwPCdQm2S7zschw2ELEDsm-E36CBt-_CJfYehXYG1YHHcxQTtOTpxdRPh4s-n6HW5eJnfZ9Xz3cP8tsoMJzJlvHSSQ10ICXZllVGFqItScmoNcYwQSh2xsuRMUeGYUkJw45Tg1iq3sjznU5SPuyb0MQZwehN8W4edpkQfCOm1HgnpAyE9EtrXbsYa7L99eQg6Gg-dAesDmKRt7_8f-AF7GHJ8</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Xiao, Hang</creator><creator>Qin, Jiayi</creator><creator>Jeon, Seunggil</creator><creator>Yan, Binyu</creator><creator>Yang, Xiaomin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><author>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Feature fusion</topic><topic>Multi-scale feature</topic><topic>Super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hang</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>Jeon, Seunggil</creatorcontrib><creatorcontrib>Yan, Binyu</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><collection>CrossRef</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Hang</au><au>Qin, Jiayi</au><au>Jeon, Seunggil</au><au>Yan, Binyu</au><au>Yang, Xiaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2022-09</date><risdate>2022</risdate><volume>93</volume><spage>104568</spage><pages>104568-</pages><artnum>104568</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2022.104568</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-9331
ispartof Microprocessors and microsystems, 2022-09, Vol.93, p.104568, Article 104568
issn 0141-9331
1872-9436
language eng
recordid cdi_crossref_primary_10_1016_j_micpro_2022_104568
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Deep learning
Feature fusion
Multi-scale feature
Super-resolution
title MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MFEN:%20Lightweight%20multi-scale%20feature%20extraction%20super-resolution%20network%20in%20embedded%20system&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Xiao,%20Hang&rft.date=2022-09&rft.volume=93&rft.spage=104568&rft.pages=104568-&rft.artnum=104568&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2022.104568&rft_dat=%3Celsevier_cross%3ES014193312200120X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true