Loading…
MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system
Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an e...
Saved in:
Published in: | Microprocessors and microsystems 2022-09, Vol.93, p.104568, Article 104568 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343 |
container_end_page | |
container_issue | |
container_start_page | 104568 |
container_title | Microprocessors and microsystems |
container_volume | 93 |
creator | Xiao, Hang Qin, Jiayi Jeon, Seunggil Yan, Binyu Yang, Xiaomin |
description | Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices. |
doi_str_mv | 10.1016/j.micpro.2022.104568 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_micpro_2022_104568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014193312200120X</els_id><sourcerecordid>S014193312200120X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</originalsourceid><addsrcrecordid>eNp9kM1KAzEcxIMoWKtv4CEvsDUfm2TXgyClVWHVi96EsE3-0dT9KEnW2re3dT17mYGBGYYfQpeUzCih8mo9a73ZhH7GCGP7KBeyOEITWiiWlTmXx2hCaE6zknN6is5iXBNCBJFsgt4el4una1z594-0hYPidmiSz6KpG8AO6jQEwPCdQm2S7zschw2ELEDsm-E36CBt-_CJfYehXYG1YHHcxQTtOTpxdRPh4s-n6HW5eJnfZ9Xz3cP8tsoMJzJlvHSSQ10ICXZllVGFqItScmoNcYwQSh2xsuRMUeGYUkJw45Tg1iq3sjznU5SPuyb0MQZwehN8W4edpkQfCOm1HgnpAyE9EtrXbsYa7L99eQg6Gg-dAesDmKRt7_8f-AF7GHJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</creator><creatorcontrib>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</creatorcontrib><description>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2022.104568</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep learning ; Feature fusion ; Multi-scale feature ; Super-resolution</subject><ispartof>Microprocessors and microsystems, 2022-09, Vol.93, p.104568, Article 104568</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</citedby><cites>FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Xiao, Hang</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>Jeon, Seunggil</creatorcontrib><creatorcontrib>Yan, Binyu</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><title>Microprocessors and microsystems</title><description>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</description><subject>Deep learning</subject><subject>Feature fusion</subject><subject>Multi-scale feature</subject><subject>Super-resolution</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEcxIMoWKtv4CEvsDUfm2TXgyClVWHVi96EsE3-0dT9KEnW2re3dT17mYGBGYYfQpeUzCih8mo9a73ZhH7GCGP7KBeyOEITWiiWlTmXx2hCaE6zknN6is5iXBNCBJFsgt4el4una1z594-0hYPidmiSz6KpG8AO6jQEwPCdQm2S7zschw2ELEDsm-E36CBt-_CJfYehXYG1YHHcxQTtOTpxdRPh4s-n6HW5eJnfZ9Xz3cP8tsoMJzJlvHSSQ10ICXZllVGFqItScmoNcYwQSh2xsuRMUeGYUkJw45Tg1iq3sjznU5SPuyb0MQZwehN8W4edpkQfCOm1HgnpAyE9EtrXbsYa7L99eQg6Gg-dAesDmKRt7_8f-AF7GHJ8</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Xiao, Hang</creator><creator>Qin, Jiayi</creator><creator>Jeon, Seunggil</creator><creator>Yan, Binyu</creator><creator>Yang, Xiaomin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</title><author>Xiao, Hang ; Qin, Jiayi ; Jeon, Seunggil ; Yan, Binyu ; Yang, Xiaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Feature fusion</topic><topic>Multi-scale feature</topic><topic>Super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hang</creatorcontrib><creatorcontrib>Qin, Jiayi</creatorcontrib><creatorcontrib>Jeon, Seunggil</creatorcontrib><creatorcontrib>Yan, Binyu</creatorcontrib><creatorcontrib>Yang, Xiaomin</creatorcontrib><collection>CrossRef</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Hang</au><au>Qin, Jiayi</au><au>Jeon, Seunggil</au><au>Yan, Binyu</au><au>Yang, Xiaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2022-09</date><risdate>2022</risdate><volume>93</volume><spage>104568</spage><pages>104568-</pages><artnum>104568</artnum><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>Deep convolutional neural networks (CNN) have achieved remarkable performance in super-resolution (SR) recently. However, deep CNN-based methods are difficult to be utilized in embedded portable device due to their heavy computation and memory consumption. To solve the above problem, we propose an effective lightweight multi-scale feature extraction super-resolution network (MFEN) by constructing multi-scale feature extraction blocks (MFEB), which progressively obtains multi-scale and hierarchical information. In addition, we also propose an efficient progressive feature fusion (PFF) strategy to aggregate multi-scale informative features. Qualitative and quantitative evaluation results on the benchmark datasets show that our designed method can obtain better performance than most state-of-the-art methods. Moreover, the computation complexity and running time of the MFEN are significantly reduced to provide convenience in real-time image processing technology for embedded devices.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2022.104568</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-9331 |
ispartof | Microprocessors and microsystems, 2022-09, Vol.93, p.104568, Article 104568 |
issn | 0141-9331 1872-9436 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_micpro_2022_104568 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Deep learning Feature fusion Multi-scale feature Super-resolution |
title | MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MFEN:%20Lightweight%20multi-scale%20feature%20extraction%20super-resolution%20network%20in%20embedded%20system&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Xiao,%20Hang&rft.date=2022-09&rft.volume=93&rft.spage=104568&rft.pages=104568-&rft.artnum=104568&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2022.104568&rft_dat=%3Celsevier_cross%3ES014193312200120X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-39f63ea856edbd7c785a89631dc0f20011f0d6932715f277553cf753dd7fbd343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |