Loading…

Determination of arsenic in dinosaur skeleton fossils by hydride generation atomic fluorescence spectrometry

Hydride generation atomic fluorescence spectrometry was for the first time utilized to determine trace toxic element arsenic in the skeleton fossils of four dinosaurs unearthed in Sichuan Province of China. The instrumental limit of detection (LOD) for arsenic was 0.03 μg/L under optimal experimenta...

Full description

Saved in:
Bibliographic Details
Published in:Microchemical journal 2004-05, Vol.77 (1), p.29-35
Main Authors: Zhou, Zaide, Luo, Hong, Hou, Xiandeng, Li, Gang, Li, Kui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydride generation atomic fluorescence spectrometry was for the first time utilized to determine trace toxic element arsenic in the skeleton fossils of four dinosaurs unearthed in Sichuan Province of China. The instrumental limit of detection (LOD) for arsenic was 0.03 μg/L under optimal experimental conditions, which compared favorably to that by ICP-AES and ETAAS. The samples were digested with aqua regia in boiling water bath. The recoveries of standard addition were found to be from 97 to 109%, and the analytical results were found in good agreement with those by ICP-AES. It is a simple, reliable, sensitive yet relatively inexpensive analytical method, compared to ICP-AES, ICP-MS or ETAAS. Interesting analytical results were found that the arsenic concentrations were all abnormally high in the skeleton fossils. The established analytical method and the analytical results may be helpful in revealing the mystery of the mass extinction of the dinosaur fauna. The analytical results, together with other data available to date, supported the argument that the arsenic toxicosis could be a contributing factor for the mass extinction of the dinosaur fauna in Sichuan Province of China.
ISSN:0026-265X
1095-9149
DOI:10.1016/j.microc.2003.11.002