Loading…
CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions
Development and optimization of solid adsorbents is highly sought after toward establishment of energy-efficient and high-throughput CO2 capture processes in industry. Herein, graphene oxide (GO), zeolitic imidazolate framework ZIF-8, and composite ZIF-8/GO adsorbents were developed and further func...
Saved in:
Published in: | Microporous and mesoporous materials 2018-09, Vol.267, p.53-67 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development and optimization of solid adsorbents is highly sought after toward establishment of energy-efficient and high-throughput CO2 capture processes in industry. Herein, graphene oxide (GO), zeolitic imidazolate framework ZIF-8, and composite ZIF-8/GO adsorbents were developed and further functionalized using various amine functionalities, namely, 3-aminopropyl-triethoxysilane (APTES), polyethyleneimine (PEI), and ethylene diamine (ED). Following structural and morphological evaluation, the resulting adsorbents were tested and compared for CO2 adsorption capacity and kinetics, while their performance under the presence of pre-adsorbed water was evaluated as well. GO functionalization by APTES resulted in a 36% increase in adsorption capacity at 1 bar and 30 °C compared to unmodified GO, and a further 33% increase under the presence of pre-adsorbed water (10% RH) compared to the corresponding APTES-GO capacity under dry conditions. Amine functionalization of ZIF-8 resulted in a capacity increase of up to 43% at 1 bar compared to unmodified ZIF-8, while ZIF-8/GO post-functionalization in water enhanced the capacity of this type of composite adsorbent compared to non-functionalized ZIF-8/GO and the pure ZIF-8 particularly at lower pressures. The reported results can be valuable towards devising optimum paths of functionalization and performance enhancement of these types of adsorbents that can pave the way toward design of highly efficient materials and processes for the current and future CO2 capture needs.
[Display omitted]
•ZIF-8, graphene oxide (GO), and ZIF-8/GO hybrids were synthesized and functionalised with various amine moieties.•The materials were tested for CO2 adsorption under dry and humid conditions.•Amine functionalization of ZIF-8 resulted in a CO2 capacity increase of up to 43% at 1 bar compared to unmodified ZIF-8.•Functionalisation of GO with 3-aminopropyl-triethoxysilane (APTES) effectuates one fold higher CO2 adsorptivity at 10% RH.•At the low pressure regime, APTES-functionalized ZIF-8/GO is a markedly better CO2 catcher compared to ZIF-8/GO and ZIF-8. |
---|---|
ISSN: | 1387-1811 1873-3093 |
DOI: | 10.1016/j.micromeso.2018.03.012 |