Loading…
Synthesis of imine-linked covalent organic frameworks and their adsorption properties for flavonoids
Isolation and enrichment of flavonoids is difficult due to the complex active components in natural medicinal extracts, and one of the most effective methods is to design adsorbents with high adsorption capacity and excellent selectivity. Covalent organic frameworks (COFs) with a large specific surf...
Saved in:
Published in: | Microporous and mesoporous materials 2023-01, Vol.348, p.112333, Article 112333 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isolation and enrichment of flavonoids is difficult due to the complex active components in natural medicinal extracts, and one of the most effective methods is to design adsorbents with high adsorption capacity and excellent selectivity. Covalent organic frameworks (COFs) with a large specific surface area and adjustable pores are increasingly used as adsorbents. Here, two imine-linked COFs (TFPPy-CB and TFPPy-ODH) consisting of 1,3,6,8-tetrakis(4-formylphenyl)pyrene, carbamide, and oxalyl dihydrazide were synthesized using solvothermal methods. They were characterized by XRD, FT-IR, XPS, TGA, SEM, TEM, water contact angle, and N2 adsorption-desorption isotherms. These two highly crystalline COFs have good thermal stability, strong hydrophobicity, and large pore size. The adsorption results were fitted to the general-order model and the Langmuir model, indicating that monolayer adsorption is the dominant adsorption mechanism. At 45 °C, the maximum adsorption capacities of luteolin, quercetin, and rutin onto TFPPy-CB were 66.32, 67.85, and 10.69 mg/g, respectively, and onto TFPPy-ODH were 73.20, 70.83, and 9.76 mg/g, respectively. The thermodynamic properties (ΔH° and ΔS°>0, ΔG° |
---|---|
ISSN: | 1387-1811 1873-3093 |
DOI: | 10.1016/j.micromeso.2022.112333 |