Loading…
Twisted-chiral mesoporous silica from coconut husk waste designed for high-performance drug uptake and sustained release
With an annual production of 2.81 million tons, the coconut husk is an essential source of silica. Various advantages of silica as a drug carrier make it one of the most developed materials in drug delivery applications. To improve the drug delivery performance of a material, twisted chirality is al...
Saved in:
Published in: | Microporous and mesoporous materials 2024-03, Vol.367, p.112973, Article 112973 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With an annual production of 2.81 million tons, the coconut husk is an essential source of silica. Various advantages of silica as a drug carrier make it one of the most developed materials in drug delivery applications. To improve the drug delivery performance of a material, twisted chirality is also classified as a critical factor because the pharmacological activity depends on the interaction of the drug with the drug carrier material in the target area. In this study, the coconut husk-based mesoporous silica (MS) can be synthesized through a calcination and sol-gel method. With the help of anionic surfactant, MS is successfully modified to have a twisted-chiral structure (CMS). CMS is characterized by twisted rod-like morphology at a size of 1–2 μm, with a helical arrangement (mixed with the beta-sheet and random coil conformations). CMS's surface area and pore volume are obtained at 288.3 m2/g and 0.614 cm3/g, with an average pore size of 7.63 nm. The maximum adsorption of tetracycline (506.5 mg/g) is reached at pH = 4, with the initial concentration of tetracycline at 400 mg/g, temperature of 323 K, and adsorption time of 600 min. The loading of tetracycline follows the pseudo-first-order model with a monolayer mechanism. The bulk migration of tetracycline from the solution into the surface of CMS is deemed the primary adsorption mechanism. The in-vitro release study of tetracycline at pH = 7.4 follows the slow-sustained release model with the cumulative release at 72.3 %, showing better release performance compared with the common MS.
[Display omitted]
•Sustainable twisted-chiral mesoporous silica, CMS, is fabricated from coconut husk.•CMS has been successfully employed as a carrier for tetracycline uptake/release.•The uptake capacity of tetracycline by CMS at equilibrium reaches 506.5 mg/g.•The release of tetracycline follows first-order model with a slow-sustained profile. |
---|---|
ISSN: | 1387-1811 |
DOI: | 10.1016/j.micromeso.2023.112973 |