Loading…

Enzyme immobilization on electrospun polymer nanofibers: An overview

Enzyme immobilization has attracted continuous attention in the fields of fine chemistry, biomedicine, and biosensor. The performance of immobilized enzyme largely depends on the structure of supports. Nanostructured supports are believed to be able to retain the catalytic activity as well as ensure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular catalysis. B, Enzymatic Enzymatic, 2009-04, Vol.56 (4), p.189-195
Main Authors: Wang, Zhen-Gang, Wan, Ling-Shu, Liu, Zhen-Mei, Huang, Xiao-Jun, Xu, Zhi-Kang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzyme immobilization has attracted continuous attention in the fields of fine chemistry, biomedicine, and biosensor. The performance of immobilized enzyme largely depends on the structure of supports. Nanostructured supports are believed to be able to retain the catalytic activity as well as ensure the immobilization efficiency of enzyme to a high extent. Electrospinning provides a simple and versatile method to fabricate nanofibrous supports. Compared with other nanostructured supports (e.g. mesoporous silica, nanoparticles), nanofibrous supports show many advantages for their high porosity and interconnectivity. This review mainly discusses the recent advances in using nanofibers as hosts for enzyme immobilization by two different methods, surface attachment and encapsulation. Surface attachment refers to physical adsorption or covalent attachment of enzymes on pristine or modified nanofibrous supports, and encapsulation means electrospinning a mixture of enzyme and polymer. We make a detailed comparison between these two immobilization approaches and highlight their distinct characteristics. The prospective applications of enzyme immobilized electrospun nanofibers in the development of biosensors, biofuel cells and biocatalysts are also discussed.
ISSN:1381-1177
1873-3158
DOI:10.1016/j.molcatb.2008.05.005