Loading…

Separation of furfuryl alcohol from water using hydrophobic deep eutectic solvents

Furfuryl alcohol (FA) is an important organic chemical feedstock that must be separated from water to upgrade it into high-value-added products. Since FA forms an azeotrope with water, liquid-liquid extraction is a suitable option for separating both compounds. This work evaluates the separation of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular liquids 2023-08, Vol.384, p.122232, Article 122232
Main Authors: Cea-Klapp, Esteban, Arroyo-Avirama, Andrés F., Ormazábal-Latorre, Sebastián, Gajardo-Parra, Nicolás F., Pazo-Carballo, César, Quinteros-Lama, Héctor, Marzialetti, Teresita, Held, Christoph, Canales, Roberto I., Garrido, José Matías
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Furfuryl alcohol (FA) is an important organic chemical feedstock that must be separated from water to upgrade it into high-value-added products. Since FA forms an azeotrope with water, liquid-liquid extraction is a suitable option for separating both compounds. This work evaluates the separation of FA from water using hydrophobic deep eutectic solvents (DES). Three DES were prepared using menthol, thymol, and octanoic acid by combining them in molar ratio as follows: thymol + octanoic acid (1:2), menthol + octanoic acid (1:2), and thymol + menthol (1:1). Experimental liquid-liquid equilibria (LLE) of ternary systems water + FA + DES measured at 313.15 K and 101.13 kPa were used to determine the distribution coefficient and selectivity values for FA when using each DES. The experimental results were compared with molecular dynamics (MD) using Martini 3 force field and modeled using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) without any adjustable binary parameters. According to the results, selectivities and distribution coefficients using hydrophobic DES have comparable values to traditional volatile organic compounds (VOCs) used to separate FA from water. In general, DES shows better distribution coefficients compared with typical organic solvents. According to the results, a good alternative would be menthol + octanoic acid (1:2) or thymol + menthol (1:1) to replace typical VOCs. MD and PC-SAFT provide accurate estimations for ternary LLE in the range of examined thermodynamic conditions, which confirms the predictive consistency of both approaches. Microscopic properties computed with MD simulations evidence a surface activity or absolute adsorption of FA in the interfacial region, which is correlated with favorable distribution coefficients and selectivities. •Effective extraction of furfuryl alcohol from water using deep eutectic solvents.•Menthol + octanoic acid (1:2) or thymol + menthol (1:1) exhibits the highest extraction efficiency.•Adsorption capacity on the liquid interface is directly linked to the efficiency.
ISSN:0167-7322
1873-3166
DOI:10.1016/j.molliq.2023.122232