Loading…
Understanding electrooxidation mechanism of anticancer drugs utilizing ultrafast pump probe spectroscopy
•Ultrafast charge transfer from singlet state to CTS.•The effect of electrochemical oxidation processes on the lifetime and rates of the CTS.•Fluorescence quenching of cancer drugs due to the charge transfer In an attempt to gain deeper insight on the charge transfer mechanism of anticancer drugs an...
Saved in:
Published in: | Journal of molecular structure 2022-08, Vol.1262, p.133071, Article 133071 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Ultrafast charge transfer from singlet state to CTS.•The effect of electrochemical oxidation processes on the lifetime and rates of the CTS.•Fluorescence quenching of cancer drugs due to the charge transfer
In an attempt to gain deeper insight on the charge transfer mechanism of anticancer drugs and their electrochemically oxidized products, steady state absorption, fluorescence and ultrafast time resolved spectroscopy measurements were performed. All selected compounds exhibit the charge transfer fluorescence in methanol solution. Fluorescence intensity of the studied compounds is significantly quenched in 0.1M H2SO4 solution due to the increasing of intramolecular charge transfer. Ultrafast charge transfer (under 100 fs) mechanism is observed between the singlet exited states and charge transfer states. Femtosecond time resolved spectroscopy results indicate that, the charge transfer rates are faster in methanol:0.1M H2SO4 (20:80;v/v) mixture than that of methanol and the lifetime of the charge transfer states increases in methanol as compared to methanol: 0.1 M H2SO4 (20:80;v/v) mixture. It is also found that the lifetime and rates of the charge transfer state can be altered by electrochemically oxidation of the drugs. Our results reveal that, the structure of compounds transforms to form of semiquinone structure in the studied solution medium. Using the combination of electrochemical and ultrafast pump probe spectroscopy measurements, the determination of in vitro electrochemical oxidation mechanisms of the drugs, mimicking in the body, via intramolecular charge transfer can be easily suggested.
[Display omitted] |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/j.molstruc.2022.133071 |