Loading…
Structural, electrical and dielectric properties of chitosan/polyaniline/vanadium-pentoxide hybrid nanocomposites
•Chitosan/polyaniline/V2O5 nanocomposites were prepared by oxidative polymerization.•Addition of V2O5 nano particles showed dramatic changes in properties of CPA matrix.•FTIR, XRD and SEM confirmed the structure and morphology of nanocomposites.•Remarkable improvement in electrical conductivity of t...
Saved in:
Published in: | Journal of molecular structure 2022-11, Vol.1267, p.133600, Article 133600 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Chitosan/polyaniline/V2O5 nanocomposites were prepared by oxidative polymerization.•Addition of V2O5 nano particles showed dramatic changes in properties of CPA matrix.•FTIR, XRD and SEM confirmed the structure and morphology of nanocomposites.•Remarkable improvement in electrical conductivity of the nanocomposites.•Enhancement in dielectric properties of the nanocomposites.•Reduced dielectric loss and tangent loss at higher frequencies.
Chitosan/polyaniline/V2O5 hybrid nanocomposites were synthesized by an oxidative polymerization technique by varying V2O5 content and using (NH4)2S2O8 as an oxidizing agent. The structural and morphological properties were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The characterization results corroborate the successful formation of the nanocomposites and reveal modifications in morphological features. The AC conductivity, dielectric, impedance, and electric modulus properties were studied in the frequency range of 10 Hz–8 MHz at room temperature. The AC conductivity and dielectric constant values of the chitosan/polyaniline matrix were remarkably improved with the addition of V2O5 nanoparticles. The AC conductivity of the CPAV-0.6 nanocomposite increased significantly at higher frequencies (5.78×10–3 S/m at 8 MHz). The CPAV-0.4 nanocomposite showed a drastic enhancement in dielectric constant values for lower frequencies (2×105 at 10 Hz). The prepared nanocomposites exhibited lower dielectric and tangent loss values at higher frequencies, implying that they are lossless materials at higher frequencies and have applicability in high-frequency devices. The relaxation time decreased with increasing V2O5 concentration (∼7.5×10–5 s for CPA and ∼2.5×10–5 s for CPAV-0.2 and CPAV-0.4), which is in good agreement with electrical results. The electrical results are further supported by the impedance and electric modulus studies. As a result of these improved properties, as-prepared nanocomposites in their optimum form are particularly helpful in energy storage and conversion devices, optoelectronic and biomedical applications, sensors, supercapacitors, and photovoltaic devices such as solar cells.
[Display omitted] |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/j.molstruc.2022.133600 |