Loading…
Flow stress analysis of TWIP steel via the XRD measurement of dislocation density
In this study, the rate of dislocation accumulation in the tensile strained twinning induced plasticity (TWIP) steel was calculated via the X-ray diffraction (XRD) measurements and compared with other fcc metals and alloys. The results indicated that the XRD technique is an alternative method to est...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-04, Vol.527 (10), p.2759-2763 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the rate of dislocation accumulation in the tensile strained twinning induced plasticity (TWIP) steel was calculated via the X-ray diffraction (XRD) measurements and compared with other fcc metals and alloys. The results indicated that the XRD technique is an alternative method to estimate the dislocation density. Moreover, flow stress analysis of Fe–31Mn–3Al–3Si TWIP steel with the grain size of about 18
μm indicated that, beside a direct effect of the dislocation interactions on the flow stress, another strengthening mechanism is also required to describe the flow behavior. For this reason, the strengthening contribution due to the formation of mechanical twins was considered as a reduction of dislocation mean free path. Interestingly, the estimated flow stress equation consisting of the strengthening effects of both dislocation interactions and dynamic microstructure refinement due to mechanical twinning (i.e., the dynamic Hall–Petch effect) are in good agreement with the experimental data and equation proposed by Ludwigson for low SFE materials. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2010.01.033 |