Loading…
Promotion of thermomechanical processing of 2-GPa low-alloyed ultrahigh-strength steel and physically based modelling of the deformation behaviour
A low-alloyed ultrahigh-strength steel comprising CrNiMoWMnV was designed based on thermodynamic calculations and by controlling the microalloying elements to promote various strengthening mechanisms upon processing. The hot deformation behaviour and mechanism were correlated with the processing par...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2023-03, Vol.867, p.144747, Article 144747 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A low-alloyed ultrahigh-strength steel comprising CrNiMoWMnV was designed based on thermodynamic calculations and by controlling the microalloying elements to promote various strengthening mechanisms upon processing. The hot deformation behaviour and mechanism were correlated with the processing parameters, that is, strain rate and temperature. The fine features of the deformed microstructures were analysed using electron backscatter diffraction (EBSD) and MATLAB software, combined with the MTEX texture and crystallographic analysis toolbox. The flow stress behaviour at high temperatures was modelled using the dislocation density-based Bergström's model, which could be applied up to the peak strain. However, the diffusional transformation (i.e. recrystallisation)-based Kolmogorov–Johnson–Mehl–Avrami model has been applied to fit the flow stress over a wide deformation strain. The effective grain size (EGS) of martensite and prior austenite grain size (PAGS) were correlated with the deformation temperature and strain rate. Because the PAGS was significantly refined from 16 μm in the initial microstructure to 6 μm after processing at 850 °C/0.01 s−1, the corresponding martensite EGSs were 1.38 and 1.01 μm, respectively. Therefore, these fine-controlled characteristics of the processed microstructures at high temperatures help to enhance the mechanical properties, such as the strength and toughness, of the designed ultrahigh-strength steel. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2023.144747 |