Loading…

A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy

In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (J...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2023-05, Vol.872, p.144994, Article 144994
Main Authors: Zhang, Haiming, Mao, Xuanyao, Xu, Shuai, Xiao, Namin, Zhang, Ning, Cui, Zhenshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3
cites cdi_FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3
container_end_page
container_issue
container_start_page 144994
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 872
creator Zhang, Haiming
Mao, Xuanyao
Xu, Shuai
Xiao, Namin
Zhang, Ning
Cui, Zhenshan
description In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) DRX kinetics was established for modeling the deformation and microstructure evolution of a near-α Ti alloy. A full-implicit stress integration scheme was proposed to implement the constitutive model into the commercial FEM solver ABAQUS/Standard. Isothermal hot compression experiments under various deformation conditions and detailed microstructure characterizations were conducted to study the deformation and DRX behaviors of the alloy, as well as to validate the developed material model. The alloy exhibits a typical discontinuous DRX behavior, macroscopically sensitive to various deformation conditions and microscopically strongly affected by the orientation of prior grains. The simulation results regarding the macroscopic flow stress curves and the local volume fractions of DRX in various regions in the specimen agree well with the experimental results. The proposed material model and the robust numerical implemental scheme can be extended to consider more physical deformation mechanisms and microstructure evolution of advanced structural metals and alloys.
doi_str_mv 10.1016/j.msea.2023.144994
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_msea_2023_144994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509323004185</els_id><sourcerecordid>S0921509323004185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVZzgRQ7cdJEYlNV_ElIbMracsYT6iqJK9utlENwGC7CmUgoa1bvaUZv5ulj7FbwheCiuNstukB6kfI0Wwgpq0qesZkol1kiq6w4ZzNepSLJeZVdsqsQdpxzIXk-Y58r2G-HYFG37QC1DmSAWh2iS442oNtP3iKg60eNh2iPBJ0z1ELj_MnZ_gPilmDrIhgax52O1vWgewOdRe9C9AeMB09AR9cefpeuAQ09aQ_fX7CxMP53wzW7aHQb6OZP5-z98WGzfk5e355e1qvXBFORx6QpeW1I55JKXaeGSlNgzlGj4YTClChELmqDtCxkgVxWQpjcZE3dyFLyZZPNWXq6O5ULnhq197bTflCCqwmo2qkJqJqAqhPQMXR_CtHY7GjJq4CWeiRjPWFUxtn_4j9FvYS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Haiming ; Mao, Xuanyao ; Xu, Shuai ; Xiao, Namin ; Zhang, Ning ; Cui, Zhenshan</creator><creatorcontrib>Zhang, Haiming ; Mao, Xuanyao ; Xu, Shuai ; Xiao, Namin ; Zhang, Ning ; Cui, Zhenshan</creatorcontrib><description>In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) DRX kinetics was established for modeling the deformation and microstructure evolution of a near-α Ti alloy. A full-implicit stress integration scheme was proposed to implement the constitutive model into the commercial FEM solver ABAQUS/Standard. Isothermal hot compression experiments under various deformation conditions and detailed microstructure characterizations were conducted to study the deformation and DRX behaviors of the alloy, as well as to validate the developed material model. The alloy exhibits a typical discontinuous DRX behavior, macroscopically sensitive to various deformation conditions and microscopically strongly affected by the orientation of prior grains. The simulation results regarding the macroscopic flow stress curves and the local volume fractions of DRX in various regions in the specimen agree well with the experimental results. The proposed material model and the robust numerical implemental scheme can be extended to consider more physical deformation mechanisms and microstructure evolution of advanced structural metals and alloys.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2023.144994</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Constitutive model ; Dynamic recrystallization ; Hot forming ; Near α titanium alloy</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2023-05, Vol.872, p.144994, Article 144994</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3</citedby><cites>FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3</cites><orcidid>0000-0003-2784-4812 ; 0000-0002-1224-3371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Mao, Xuanyao</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Xiao, Namin</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Cui, Zhenshan</creatorcontrib><title>A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) DRX kinetics was established for modeling the deformation and microstructure evolution of a near-α Ti alloy. A full-implicit stress integration scheme was proposed to implement the constitutive model into the commercial FEM solver ABAQUS/Standard. Isothermal hot compression experiments under various deformation conditions and detailed microstructure characterizations were conducted to study the deformation and DRX behaviors of the alloy, as well as to validate the developed material model. The alloy exhibits a typical discontinuous DRX behavior, macroscopically sensitive to various deformation conditions and microscopically strongly affected by the orientation of prior grains. The simulation results regarding the macroscopic flow stress curves and the local volume fractions of DRX in various regions in the specimen agree well with the experimental results. The proposed material model and the robust numerical implemental scheme can be extended to consider more physical deformation mechanisms and microstructure evolution of advanced structural metals and alloys.</description><subject>Constitutive model</subject><subject>Dynamic recrystallization</subject><subject>Hot forming</subject><subject>Near α titanium alloy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVZzgRQ7cdJEYlNV_ElIbMracsYT6iqJK9utlENwGC7CmUgoa1bvaUZv5ulj7FbwheCiuNstukB6kfI0Wwgpq0qesZkol1kiq6w4ZzNepSLJeZVdsqsQdpxzIXk-Y58r2G-HYFG37QC1DmSAWh2iS442oNtP3iKg60eNh2iPBJ0z1ELj_MnZ_gPilmDrIhgax52O1vWgewOdRe9C9AeMB09AR9cefpeuAQ09aQ_fX7CxMP53wzW7aHQb6OZP5-z98WGzfk5e355e1qvXBFORx6QpeW1I55JKXaeGSlNgzlGj4YTClChELmqDtCxkgVxWQpjcZE3dyFLyZZPNWXq6O5ULnhq197bTflCCqwmo2qkJqJqAqhPQMXR_CtHY7GjJq4CWeiRjPWFUxtn_4j9FvYS8</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Zhang, Haiming</creator><creator>Mao, Xuanyao</creator><creator>Xu, Shuai</creator><creator>Xiao, Namin</creator><creator>Zhang, Ning</creator><creator>Cui, Zhenshan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2784-4812</orcidid><orcidid>https://orcid.org/0000-0002-1224-3371</orcidid></search><sort><creationdate>20230508</creationdate><title>A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy</title><author>Zhang, Haiming ; Mao, Xuanyao ; Xu, Shuai ; Xiao, Namin ; Zhang, Ning ; Cui, Zhenshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constitutive model</topic><topic>Dynamic recrystallization</topic><topic>Hot forming</topic><topic>Near α titanium alloy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Mao, Xuanyao</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Xiao, Namin</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Cui, Zhenshan</creatorcontrib><collection>CrossRef</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haiming</au><au>Mao, Xuanyao</au><au>Xu, Shuai</au><au>Xiao, Namin</au><au>Zhang, Ning</au><au>Cui, Zhenshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2023-05-08</date><risdate>2023</risdate><volume>872</volume><spage>144994</spage><pages>144994-</pages><artnum>144994</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this work, a general elasto-viscoplastic constitutive model incorporating a finite strain viscoplastic flow law, the Kocks-Mecking dislocation density evolution, work hardening, stress softening due to dynamic recovery and dynamic recrystallization (DRX), and the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) DRX kinetics was established for modeling the deformation and microstructure evolution of a near-α Ti alloy. A full-implicit stress integration scheme was proposed to implement the constitutive model into the commercial FEM solver ABAQUS/Standard. Isothermal hot compression experiments under various deformation conditions and detailed microstructure characterizations were conducted to study the deformation and DRX behaviors of the alloy, as well as to validate the developed material model. The alloy exhibits a typical discontinuous DRX behavior, macroscopically sensitive to various deformation conditions and microscopically strongly affected by the orientation of prior grains. The simulation results regarding the macroscopic flow stress curves and the local volume fractions of DRX in various regions in the specimen agree well with the experimental results. The proposed material model and the robust numerical implemental scheme can be extended to consider more physical deformation mechanisms and microstructure evolution of advanced structural metals and alloys.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2023.144994</doi><orcidid>https://orcid.org/0000-0003-2784-4812</orcidid><orcidid>https://orcid.org/0000-0002-1224-3371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2023-05, Vol.872, p.144994, Article 144994
issn 0921-5093
1873-4936
language eng
recordid cdi_crossref_primary_10_1016_j_msea_2023_144994
source ScienceDirect Freedom Collection
subjects Constitutive model
Dynamic recrystallization
Hot forming
Near α titanium alloy
title A physically based elasto-viscoplastic constitutive model for modeling the hot deformation and microstructure evolution of a near α Ti alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physically%20based%20elasto-viscoplastic%20constitutive%20model%20for%20modeling%20the%20hot%20deformation%20and%20microstructure%20evolution%20of%20a%20near%20%CE%B1%20Ti%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zhang,%20Haiming&rft.date=2023-05-08&rft.volume=872&rft.spage=144994&rft.pages=144994-&rft.artnum=144994&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2023.144994&rft_dat=%3Celsevier_cross%3ES0921509323004185%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c215t-f80bdea54e8ab2de8d6c50cacd0ec1d8c1151bdce7646c04911d5d3fbf48407f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true