Loading…
Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method
[Display omitted] •Mn-doped CuO nanoparticles was developed by a novel coprecipitation technique.•Mn2+ions are successfully introduced into the CuO lattice.•The content of Mn plays a crucial role in the lattice parameters and optical properties.•The Mn-doped CuO sample shows maximum saturation magne...
Saved in:
Published in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2023-03, Vol.289, p.116254, Article 116254 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943 |
container_end_page | |
container_issue | |
container_start_page | 116254 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 289 |
creator | Mote, Vishwanath D. Lokhande, S.D. Kathwate, L.H. Awale, M.B. Sudake, Yuvraj |
description | [Display omitted]
•Mn-doped CuO nanoparticles was developed by a novel coprecipitation technique.•Mn2+ions are successfully introduced into the CuO lattice.•The content of Mn plays a crucial role in the lattice parameters and optical properties.•The Mn-doped CuO sample shows maximum saturation magnetization.•Reduction of energy band gap with Mn content which plays an important role in the photovoltaic applications.
Structural, optical, and magnetic properties of Mn-doped CuO nanoparticles with compositional formula Cu1-xMnxO (x = 0.00, 0.01, 0.02) were investigated. The monoclinic structure of CuO without a secondary phase has been confirmed by X-ray diffraction (XRD) analysis. The average crystallite size was determined by Debye-Scherer’s formula and found in the range of 8 nm to 14 nm. W-H analysis resulted in decreasing microstrain with an increase of Mn doping, indicating Mn incorporation in CuO host lattice. Scanning electron microscope (SEM) images indicate that the pure and Mn-doped CuO nanoparticles have spherical-like morphology. UV–vis spectroscopy measurements revealed absorbance edge as a function of Mn doping. X-ray photoelectronic spectroscopy (XPS) study indicates that both Cu and Mn ions have 2+ valences in the samples. The magnetic hysteresis loops of the nanoparticles showed paramagnetic behavior at room temperature. |
doi_str_mv | 10.1016/j.mseb.2022.116254 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mseb_2022_116254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510722006420</els_id><sourcerecordid>S0921510722006420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKs8gK35adME3MigozAyC3Ud0uRWM7RNSTLCvL0dxrWry8fHudx7ELqlpKSEivtdOSRoS0YYKykVrK7O0ILKhheVqqpztCCK0aKmpLlEVyntCCGUMbZA9j3Hvc37aPo7HKbsremxGR0ezNcIc8RTDBPE7CHh0OG3sXBzdni13-LRjGEyc2f7uW0P2IYpgvWTzyb7MOIB8ndw1-iiM32Cm7-5RJ_PTx-rl2KzXb-uHjeF5YTkQggOkgihrGJ1R6WU1JmKuaYDJZqKSyWdknVTg5AtN5x3TEorO95SaZWq-BKx014bQ0oROj1FP5h40JTooya900dN-qhJnzTN0MMJgvmyHw9RJ-thtOD8_ErWLvj_8F9S1XF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mote, Vishwanath D. ; Lokhande, S.D. ; Kathwate, L.H. ; Awale, M.B. ; Sudake, Yuvraj</creator><creatorcontrib>Mote, Vishwanath D. ; Lokhande, S.D. ; Kathwate, L.H. ; Awale, M.B. ; Sudake, Yuvraj</creatorcontrib><description>[Display omitted]
•Mn-doped CuO nanoparticles was developed by a novel coprecipitation technique.•Mn2+ions are successfully introduced into the CuO lattice.•The content of Mn plays a crucial role in the lattice parameters and optical properties.•The Mn-doped CuO sample shows maximum saturation magnetization.•Reduction of energy band gap with Mn content which plays an important role in the photovoltaic applications.
Structural, optical, and magnetic properties of Mn-doped CuO nanoparticles with compositional formula Cu1-xMnxO (x = 0.00, 0.01, 0.02) were investigated. The monoclinic structure of CuO without a secondary phase has been confirmed by X-ray diffraction (XRD) analysis. The average crystallite size was determined by Debye-Scherer’s formula and found in the range of 8 nm to 14 nm. W-H analysis resulted in decreasing microstrain with an increase of Mn doping, indicating Mn incorporation in CuO host lattice. Scanning electron microscope (SEM) images indicate that the pure and Mn-doped CuO nanoparticles have spherical-like morphology. UV–vis spectroscopy measurements revealed absorbance edge as a function of Mn doping. X-ray photoelectronic spectroscopy (XPS) study indicates that both Cu and Mn ions have 2+ valences in the samples. The magnetic hysteresis loops of the nanoparticles showed paramagnetic behavior at room temperature.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2022.116254</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CuO ; Microstrain ; Nanoparticles ; Paramagnetic ; Spintronics ; X-ray diffraction</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2023-03, Vol.289, p.116254, Article 116254</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943</citedby><cites>FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mote, Vishwanath D.</creatorcontrib><creatorcontrib>Lokhande, S.D.</creatorcontrib><creatorcontrib>Kathwate, L.H.</creatorcontrib><creatorcontrib>Awale, M.B.</creatorcontrib><creatorcontrib>Sudake, Yuvraj</creatorcontrib><title>Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted]
•Mn-doped CuO nanoparticles was developed by a novel coprecipitation technique.•Mn2+ions are successfully introduced into the CuO lattice.•The content of Mn plays a crucial role in the lattice parameters and optical properties.•The Mn-doped CuO sample shows maximum saturation magnetization.•Reduction of energy band gap with Mn content which plays an important role in the photovoltaic applications.
Structural, optical, and magnetic properties of Mn-doped CuO nanoparticles with compositional formula Cu1-xMnxO (x = 0.00, 0.01, 0.02) were investigated. The monoclinic structure of CuO without a secondary phase has been confirmed by X-ray diffraction (XRD) analysis. The average crystallite size was determined by Debye-Scherer’s formula and found in the range of 8 nm to 14 nm. W-H analysis resulted in decreasing microstrain with an increase of Mn doping, indicating Mn incorporation in CuO host lattice. Scanning electron microscope (SEM) images indicate that the pure and Mn-doped CuO nanoparticles have spherical-like morphology. UV–vis spectroscopy measurements revealed absorbance edge as a function of Mn doping. X-ray photoelectronic spectroscopy (XPS) study indicates that both Cu and Mn ions have 2+ valences in the samples. The magnetic hysteresis loops of the nanoparticles showed paramagnetic behavior at room temperature.</description><subject>CuO</subject><subject>Microstrain</subject><subject>Nanoparticles</subject><subject>Paramagnetic</subject><subject>Spintronics</subject><subject>X-ray diffraction</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKs8gK35adME3MigozAyC3Ud0uRWM7RNSTLCvL0dxrWry8fHudx7ELqlpKSEivtdOSRoS0YYKykVrK7O0ILKhheVqqpztCCK0aKmpLlEVyntCCGUMbZA9j3Hvc37aPo7HKbsremxGR0ezNcIc8RTDBPE7CHh0OG3sXBzdni13-LRjGEyc2f7uW0P2IYpgvWTzyb7MOIB8ndw1-iiM32Cm7-5RJ_PTx-rl2KzXb-uHjeF5YTkQggOkgihrGJ1R6WU1JmKuaYDJZqKSyWdknVTg5AtN5x3TEorO95SaZWq-BKx014bQ0oROj1FP5h40JTooya900dN-qhJnzTN0MMJgvmyHw9RJ-thtOD8_ErWLvj_8F9S1XF-</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Mote, Vishwanath D.</creator><creator>Lokhande, S.D.</creator><creator>Kathwate, L.H.</creator><creator>Awale, M.B.</creator><creator>Sudake, Yuvraj</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202303</creationdate><title>Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method</title><author>Mote, Vishwanath D. ; Lokhande, S.D. ; Kathwate, L.H. ; Awale, M.B. ; Sudake, Yuvraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CuO</topic><topic>Microstrain</topic><topic>Nanoparticles</topic><topic>Paramagnetic</topic><topic>Spintronics</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mote, Vishwanath D.</creatorcontrib><creatorcontrib>Lokhande, S.D.</creatorcontrib><creatorcontrib>Kathwate, L.H.</creatorcontrib><creatorcontrib>Awale, M.B.</creatorcontrib><creatorcontrib>Sudake, Yuvraj</creatorcontrib><collection>CrossRef</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mote, Vishwanath D.</au><au>Lokhande, S.D.</au><au>Kathwate, L.H.</au><au>Awale, M.B.</au><au>Sudake, Yuvraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2023-03</date><risdate>2023</risdate><volume>289</volume><spage>116254</spage><pages>116254-</pages><artnum>116254</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted]
•Mn-doped CuO nanoparticles was developed by a novel coprecipitation technique.•Mn2+ions are successfully introduced into the CuO lattice.•The content of Mn plays a crucial role in the lattice parameters and optical properties.•The Mn-doped CuO sample shows maximum saturation magnetization.•Reduction of energy band gap with Mn content which plays an important role in the photovoltaic applications.
Structural, optical, and magnetic properties of Mn-doped CuO nanoparticles with compositional formula Cu1-xMnxO (x = 0.00, 0.01, 0.02) were investigated. The monoclinic structure of CuO without a secondary phase has been confirmed by X-ray diffraction (XRD) analysis. The average crystallite size was determined by Debye-Scherer’s formula and found in the range of 8 nm to 14 nm. W-H analysis resulted in decreasing microstrain with an increase of Mn doping, indicating Mn incorporation in CuO host lattice. Scanning electron microscope (SEM) images indicate that the pure and Mn-doped CuO nanoparticles have spherical-like morphology. UV–vis spectroscopy measurements revealed absorbance edge as a function of Mn doping. X-ray photoelectronic spectroscopy (XPS) study indicates that both Cu and Mn ions have 2+ valences in the samples. The magnetic hysteresis loops of the nanoparticles showed paramagnetic behavior at room temperature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2022.116254</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2023-03, Vol.289, p.116254, Article 116254 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_mseb_2022_116254 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | CuO Microstrain Nanoparticles Paramagnetic Spintronics X-ray diffraction |
title | Structural, optical and magnetic properties of Mn-doped CuO nanoparticles by coprecipitation method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical%20and%20magnetic%20properties%20of%20Mn-doped%20CuO%20nanoparticles%20by%20coprecipitation%20method&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Mote,%20Vishwanath%20D.&rft.date=2023-03&rft.volume=289&rft.spage=116254&rft.pages=116254-&rft.artnum=116254&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2022.116254&rft_dat=%3Celsevier_cross%3ES0921510722006420%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-663e80669c925f18881da42d7fe96743898d98575e68b3a33f288c8f3b18c9943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |