Loading…

Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application

[Display omitted] •Zn2+:LaMnO3 perovskites nanoparticles tailored for improved electrochemical performance.•At 1 A g−1 current density, Zn2+:LaMnO3 boost a specific capacitance of 598F g−1.•Zn2+:LaMnO3 perovskites nanoparticles serve as excellent electrode material for supercapacitor applications. T...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2024-10, Vol.308, p.117617, Article 117617
Main Authors: Ambujam, K., Sridevi, A., Pandiaraj, Saravanan, Alodhayb, Abdullah N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c967-ead8002307bd32c73d9debb7d738a8c40b31cee086e96e170ecc56c595c9add83
container_end_page
container_issue
container_start_page 117617
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 308
creator Ambujam, K.
Sridevi, A.
Pandiaraj, Saravanan
Alodhayb, Abdullah N.
description [Display omitted] •Zn2+:LaMnO3 perovskites nanoparticles tailored for improved electrochemical performance.•At 1 A g−1 current density, Zn2+:LaMnO3 boost a specific capacitance of 598F g−1.•Zn2+:LaMnO3 perovskites nanoparticles serve as excellent electrode material for supercapacitor applications. This work has examined the impact of Zn2+ on the crystal architecture and electrochemical functionality of LaMnO3 perovskite nanoparticles. Crystalline parameters of the as-prepared samples were analyzed by X-ray Diffraction studies (XRD). Fourier transform infrared (FT-IR) measurements are utilized to detect the functional groups present in the sample. Raman spectroscopy technique was used to analyze the nature of the chemical bonds in the prepared material. The shape and elemental content of the produced nanomaterials were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). Brunauer-Emmett-Teller (BET) technique is used to study the porosity and surface area of the material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) is employed to study the surface resistivity, oxidation–reduction potential and super capacitance efficiency of the prepared electrode material.
doi_str_mv 10.1016/j.mseb.2024.117617
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mseb_2024_117617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092151072400446X</els_id><sourcerecordid>S092151072400446X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c967-ead8002307bd32c73d9debb7d738a8c40b31cee086e96e170ecc56c595c9add83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQDOARCn8ASbvKMV2mjipWFDFl1RUJDqxWJfzRXFJ48gOlfJH-L0kKjOTdZLfu9OLohvBF4KL7G6_OAQqF5LL5UIIlQl1Fs14IUWcCq4uossQ9pxzIaWcRT8fQ9vXFGxgrmKfrbxdbeCt3SasI--O4cv2FFgLrevA9xabcSoHVgHahhi6uPOEtrM99Na1DLrOO8B6xd7rIVh0WNPBIjQMa_CAPXkbRk1g0BoWvsclCN0o652f4Gb8O4muovMKmkDXf-882j097tYv8Wb7_Lp-2MRYZComMDnnMuGqNIlElZjCUFkqo5IcclzyMhFIxPOMioyE4oSYZpgWKRZgTJ7MI3nSoncheKp05-0B_KAF11NMvddTTD3F1KeYI3R_gmg87GjJ64CWWiRjxxa9Ns7-h_8Ch8-E3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ambujam, K. ; Sridevi, A. ; Pandiaraj, Saravanan ; Alodhayb, Abdullah N.</creator><creatorcontrib>Ambujam, K. ; Sridevi, A. ; Pandiaraj, Saravanan ; Alodhayb, Abdullah N.</creatorcontrib><description>[Display omitted] •Zn2+:LaMnO3 perovskites nanoparticles tailored for improved electrochemical performance.•At 1 A g−1 current density, Zn2+:LaMnO3 boost a specific capacitance of 598F g−1.•Zn2+:LaMnO3 perovskites nanoparticles serve as excellent electrode material for supercapacitor applications. This work has examined the impact of Zn2+ on the crystal architecture and electrochemical functionality of LaMnO3 perovskite nanoparticles. Crystalline parameters of the as-prepared samples were analyzed by X-ray Diffraction studies (XRD). Fourier transform infrared (FT-IR) measurements are utilized to detect the functional groups present in the sample. Raman spectroscopy technique was used to analyze the nature of the chemical bonds in the prepared material. The shape and elemental content of the produced nanomaterials were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). Brunauer-Emmett-Teller (BET) technique is used to study the porosity and surface area of the material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) is employed to study the surface resistivity, oxidation–reduction potential and super capacitance efficiency of the prepared electrode material.</description><identifier>ISSN: 0921-5107</identifier><identifier>DOI: 10.1016/j.mseb.2024.117617</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Co-precipitation ; Energy storage device ; Nanoparticles ; Perovskite crystals ; Transition metal doped</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2024-10, Vol.308, p.117617, Article 117617</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c967-ead8002307bd32c73d9debb7d738a8c40b31cee086e96e170ecc56c595c9add83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ambujam, K.</creatorcontrib><creatorcontrib>Sridevi, A.</creatorcontrib><creatorcontrib>Pandiaraj, Saravanan</creatorcontrib><creatorcontrib>Alodhayb, Abdullah N.</creatorcontrib><title>Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •Zn2+:LaMnO3 perovskites nanoparticles tailored for improved electrochemical performance.•At 1 A g−1 current density, Zn2+:LaMnO3 boost a specific capacitance of 598F g−1.•Zn2+:LaMnO3 perovskites nanoparticles serve as excellent electrode material for supercapacitor applications. This work has examined the impact of Zn2+ on the crystal architecture and electrochemical functionality of LaMnO3 perovskite nanoparticles. Crystalline parameters of the as-prepared samples were analyzed by X-ray Diffraction studies (XRD). Fourier transform infrared (FT-IR) measurements are utilized to detect the functional groups present in the sample. Raman spectroscopy technique was used to analyze the nature of the chemical bonds in the prepared material. The shape and elemental content of the produced nanomaterials were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). Brunauer-Emmett-Teller (BET) technique is used to study the porosity and surface area of the material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) is employed to study the surface resistivity, oxidation–reduction potential and super capacitance efficiency of the prepared electrode material.</description><subject>Co-precipitation</subject><subject>Energy storage device</subject><subject>Nanoparticles</subject><subject>Perovskite crystals</subject><subject>Transition metal doped</subject><issn>0921-5107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQDOARCn8ASbvKMV2mjipWFDFl1RUJDqxWJfzRXFJ48gOlfJH-L0kKjOTdZLfu9OLohvBF4KL7G6_OAQqF5LL5UIIlQl1Fs14IUWcCq4uossQ9pxzIaWcRT8fQ9vXFGxgrmKfrbxdbeCt3SasI--O4cv2FFgLrevA9xabcSoHVgHahhi6uPOEtrM99Na1DLrOO8B6xd7rIVh0WNPBIjQMa_CAPXkbRk1g0BoWvsclCN0o652f4Gb8O4muovMKmkDXf-882j097tYv8Wb7_Lp-2MRYZComMDnnMuGqNIlElZjCUFkqo5IcclzyMhFIxPOMioyE4oSYZpgWKRZgTJ7MI3nSoncheKp05-0B_KAF11NMvddTTD3F1KeYI3R_gmg87GjJ64CWWiRjxxa9Ns7-h_8Ch8-E3A</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Ambujam, K.</creator><creator>Sridevi, A.</creator><creator>Pandiaraj, Saravanan</creator><creator>Alodhayb, Abdullah N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application</title><author>Ambujam, K. ; Sridevi, A. ; Pandiaraj, Saravanan ; Alodhayb, Abdullah N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c967-ead8002307bd32c73d9debb7d738a8c40b31cee086e96e170ecc56c595c9add83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Co-precipitation</topic><topic>Energy storage device</topic><topic>Nanoparticles</topic><topic>Perovskite crystals</topic><topic>Transition metal doped</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambujam, K.</creatorcontrib><creatorcontrib>Sridevi, A.</creatorcontrib><creatorcontrib>Pandiaraj, Saravanan</creatorcontrib><creatorcontrib>Alodhayb, Abdullah N.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambujam, K.</au><au>Sridevi, A.</au><au>Pandiaraj, Saravanan</au><au>Alodhayb, Abdullah N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2024-10</date><risdate>2024</risdate><volume>308</volume><spage>117617</spage><pages>117617-</pages><artnum>117617</artnum><issn>0921-5107</issn><abstract>[Display omitted] •Zn2+:LaMnO3 perovskites nanoparticles tailored for improved electrochemical performance.•At 1 A g−1 current density, Zn2+:LaMnO3 boost a specific capacitance of 598F g−1.•Zn2+:LaMnO3 perovskites nanoparticles serve as excellent electrode material for supercapacitor applications. This work has examined the impact of Zn2+ on the crystal architecture and electrochemical functionality of LaMnO3 perovskite nanoparticles. Crystalline parameters of the as-prepared samples were analyzed by X-ray Diffraction studies (XRD). Fourier transform infrared (FT-IR) measurements are utilized to detect the functional groups present in the sample. Raman spectroscopy technique was used to analyze the nature of the chemical bonds in the prepared material. The shape and elemental content of the produced nanomaterials were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). Brunauer-Emmett-Teller (BET) technique is used to study the porosity and surface area of the material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) is employed to study the surface resistivity, oxidation–reduction potential and super capacitance efficiency of the prepared electrode material.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2024.117617</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2024-10, Vol.308, p.117617, Article 117617
issn 0921-5107
language eng
recordid cdi_crossref_primary_10_1016_j_mseb_2024_117617
source ScienceDirect Freedom Collection 2022-2024
subjects Co-precipitation
Energy storage device
Nanoparticles
Perovskite crystals
Transition metal doped
title Synthesis of Zn2+:LaMnO3 perovskites nanoparticles by facile co-precipitation approach: Physicochemical characteristics and supercapacitor application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Zn2+:LaMnO3%20perovskites%20nanoparticles%20by%20facile%20co-precipitation%20approach:%20Physicochemical%20characteristics%20and%20supercapacitor%20application&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Ambujam,%20K.&rft.date=2024-10&rft.volume=308&rft.spage=117617&rft.pages=117617-&rft.artnum=117617&rft.issn=0921-5107&rft_id=info:doi/10.1016/j.mseb.2024.117617&rft_dat=%3Celsevier_cross%3ES092151072400446X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c967-ead8002307bd32c73d9debb7d738a8c40b31cee086e96e170ecc56c595c9add83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true