Loading…

Integration of zeolite@metal–organic framework: a composite catalyst for isopropyl alcohol conversion to aromatics

In this study, a Zn-based metal-organic framework (MOF)-zeolite composite ZSM-5@IRMOF-1 was synthesized for the alternative production of BTX from isopropyl alcohol (IPA). Incorporation ensured the capacity to tune the Lewis acidity at a framework level and design accessible pore structures, making...

Full description

Saved in:
Bibliographic Details
Published in:Materials today chemistry 2022-06, Vol.24, p.100796, Article 100796
Main Authors: Singh, O., Agrawal, A., Abraham, B.M., Goyal, R., Pendem, C., Sarkar, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a Zn-based metal-organic framework (MOF)-zeolite composite ZSM-5@IRMOF-1 was synthesized for the alternative production of BTX from isopropyl alcohol (IPA). Incorporation ensured the capacity to tune the Lewis acidity at a framework level and design accessible pore structures, making composites highly attractive to be used as catalysts. The combination of monodispersed HZSM-5 zeolites on and within acidic IRMOF-1 provided the highly selective production of lower aromatics from IPA. The interaction of IPA with catalysts was investigated at different temperatures in a fixed-bed continuous flow reactor. The obtained product was analyzed using a standard test method ASTM D6730 through gas chromatography-detail hydrocarbon analyser. The results indicated that the reaction between IPA and MOF-supported zeolite occurred without substantial participation of MOFs. The maximum aromatic (BTEX) selectivity of 38.2% was achieved among all hydrocarbons at 92.3% carbon conversion. In addition, the gas yield was
ISSN:2468-5194
2468-5194
DOI:10.1016/j.mtchem.2022.100796