Loading…

An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks

Biofouling is a pivotal problem for polymeric membranes used in water treatment and reuse. Surface functionalization is a promising practice to improve the resistance of membranes to biofouling. Diverse materials, synthesis methods, and functionalization techniques will be needed to address differen...

Full description

Saved in:
Bibliographic Details
Published in:Materials today chemistry 2022-12, Vol.26, p.101044, Article 101044
Main Authors: Zolghadr, E., Dadashi Firouzjaei, M., Aghapour Aktij, S., Aghaei, A., Wujcik, E.K., Sadrzadeh, M., Rahimpour, A., Afkhami, F.A., LeClair, P., Elliott, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313
cites cdi_FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313
container_end_page
container_issue
container_start_page 101044
container_title Materials today chemistry
container_volume 26
creator Zolghadr, E.
Dadashi Firouzjaei, M.
Aghapour Aktij, S.
Aghaei, A.
Wujcik, E.K.
Sadrzadeh, M.
Rahimpour, A.
Afkhami, F.A.
LeClair, P.
Elliott, M.
description Biofouling is a pivotal problem for polymeric membranes used in water treatment and reuse. Surface functionalization is a promising practice to improve the resistance of membranes to biofouling. Diverse materials, synthesis methods, and functionalization techniques will be needed to address different applications. Herein, we employed a novel ultrasonic-assisted technique to functionalize polyvinylidene fluoride microfiltration membranes by silver-based metal-organic frameworks (AgMOFs). Polydopamine (PDA) coating was also used to carry out this surface modification. In this study, AgMOFs were synthesized and in-situ grafted on the membrane surface simultaneously using ultrasonication for the first time. Unlike the conventional methods in which AgMOFs are prone to be washed away, the AgMOFs synthesized by ultrasonic-assisted method strongly bonded with the PDA-coated membrane. In addition, the MOF-PDA membrane fabricated by this method showed more uniform and size-controlled AgMOFs on the membrane surface than other conventional methods with large MOF clusters. The AgMOF-functionalized membrane displayed enhanced static antibacterial activity and dynamic biofouling resistance compared to those of the PDA-coated and pristine membranes while in contact with the model bacteria, Escherichia coli and Staphylococcus aureus. These results were evidenced by a larger inhibition zone area, a decline in viable cells observed in static antibacterial experiments, and more retained water flux in dynamic biofouling experiments. Altogether, our findings indicate that the in-situ synthesis of AgMOFs on membrane surfaces was successful by this facile and environmentally friendly method which can be considered in future studies with the purpose of surface modification for diverse applications. [Display omitted] •Ag-MOFs) are in-situ grafted on polydopamine-coated polyvinylidene fluoride membrane using ultrasonication.•AgMOFs are dispersed uniformly with controllable size on the membrane surface.•AgMOF-modified membrane shows remarkable static biocidal activity against E. coli and S. aureus.•AgMOF-modified membrane shows 66 and 23% higher flux than the blank membrane.
doi_str_mv 10.1016/j.mtchem.2022.101044
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtchem_2022_101044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468519422002737</els_id><sourcerecordid>S2468519422002737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0D1j4B1L8ymuDVFW8pEpsYG2N7UnrksSV7RbxEfwzKWHBitXMvdK9MzpZdsPoglFW3u4WfTJb7Beccn6yqJRn2YzLss4L1sjzP_tlNo9xRynllAlZlLPsazmQQ5cCRD84k0OMLia0JMDeWQL7ffBgtqT1gcRDTOAG0B2SFnRwBpLzA_EtgSE5DSZhcNCNyv44uXa-9YfODRvSY68DDBjJ0cGoEnS5DxsYj5I2QI8fPrzH6-yihS7i_HdeZW8P96-rp3z98vi8Wq5zIwqe8qYstLFoZV2BlS3WknJW1wJ1KaumgULwiqEAkJUQhbSVFlQgNtawRteCiatMTr0m-BgDtmofXA_hUzGqTlTVTk1U1YmqmqiOsbsphuNvR4dBReNwMGhdQJOU9e7_gm-GE4Xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks</title><source>ScienceDirect Journals</source><creator>Zolghadr, E. ; Dadashi Firouzjaei, M. ; Aghapour Aktij, S. ; Aghaei, A. ; Wujcik, E.K. ; Sadrzadeh, M. ; Rahimpour, A. ; Afkhami, F.A. ; LeClair, P. ; Elliott, M.</creator><creatorcontrib>Zolghadr, E. ; Dadashi Firouzjaei, M. ; Aghapour Aktij, S. ; Aghaei, A. ; Wujcik, E.K. ; Sadrzadeh, M. ; Rahimpour, A. ; Afkhami, F.A. ; LeClair, P. ; Elliott, M.</creatorcontrib><description>Biofouling is a pivotal problem for polymeric membranes used in water treatment and reuse. Surface functionalization is a promising practice to improve the resistance of membranes to biofouling. Diverse materials, synthesis methods, and functionalization techniques will be needed to address different applications. Herein, we employed a novel ultrasonic-assisted technique to functionalize polyvinylidene fluoride microfiltration membranes by silver-based metal-organic frameworks (AgMOFs). Polydopamine (PDA) coating was also used to carry out this surface modification. In this study, AgMOFs were synthesized and in-situ grafted on the membrane surface simultaneously using ultrasonication for the first time. Unlike the conventional methods in which AgMOFs are prone to be washed away, the AgMOFs synthesized by ultrasonic-assisted method strongly bonded with the PDA-coated membrane. In addition, the MOF-PDA membrane fabricated by this method showed more uniform and size-controlled AgMOFs on the membrane surface than other conventional methods with large MOF clusters. The AgMOF-functionalized membrane displayed enhanced static antibacterial activity and dynamic biofouling resistance compared to those of the PDA-coated and pristine membranes while in contact with the model bacteria, Escherichia coli and Staphylococcus aureus. These results were evidenced by a larger inhibition zone area, a decline in viable cells observed in static antibacterial experiments, and more retained water flux in dynamic biofouling experiments. Altogether, our findings indicate that the in-situ synthesis of AgMOFs on membrane surfaces was successful by this facile and environmentally friendly method which can be considered in future studies with the purpose of surface modification for diverse applications. [Display omitted] •Ag-MOFs) are in-situ grafted on polydopamine-coated polyvinylidene fluoride membrane using ultrasonication.•AgMOFs are dispersed uniformly with controllable size on the membrane surface.•AgMOF-modified membrane shows remarkable static biocidal activity against E. coli and S. aureus.•AgMOF-modified membrane shows 66 and 23% higher flux than the blank membrane.</description><identifier>ISSN: 2468-5194</identifier><identifier>EISSN: 2468-5194</identifier><identifier>DOI: 10.1016/j.mtchem.2022.101044</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Antibacterial activities ; Biofouling ; Green chemistry ; Microfiltration ; MOF ; Surface modification ; Ultrasonication</subject><ispartof>Materials today chemistry, 2022-12, Vol.26, p.101044, Article 101044</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313</citedby><cites>FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313</cites><orcidid>0000-0003-4134-2608 ; 0000-0002-5186-8614 ; 0000-0001-5977-8480 ; 0000-0002-7802-2686 ; 0000-0002-0403-8351 ; 0000-0002-0215-8210 ; 0000-0002-4966-863X ; 0000-0003-1511-2761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zolghadr, E.</creatorcontrib><creatorcontrib>Dadashi Firouzjaei, M.</creatorcontrib><creatorcontrib>Aghapour Aktij, S.</creatorcontrib><creatorcontrib>Aghaei, A.</creatorcontrib><creatorcontrib>Wujcik, E.K.</creatorcontrib><creatorcontrib>Sadrzadeh, M.</creatorcontrib><creatorcontrib>Rahimpour, A.</creatorcontrib><creatorcontrib>Afkhami, F.A.</creatorcontrib><creatorcontrib>LeClair, P.</creatorcontrib><creatorcontrib>Elliott, M.</creatorcontrib><title>An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks</title><title>Materials today chemistry</title><description>Biofouling is a pivotal problem for polymeric membranes used in water treatment and reuse. Surface functionalization is a promising practice to improve the resistance of membranes to biofouling. Diverse materials, synthesis methods, and functionalization techniques will be needed to address different applications. Herein, we employed a novel ultrasonic-assisted technique to functionalize polyvinylidene fluoride microfiltration membranes by silver-based metal-organic frameworks (AgMOFs). Polydopamine (PDA) coating was also used to carry out this surface modification. In this study, AgMOFs were synthesized and in-situ grafted on the membrane surface simultaneously using ultrasonication for the first time. Unlike the conventional methods in which AgMOFs are prone to be washed away, the AgMOFs synthesized by ultrasonic-assisted method strongly bonded with the PDA-coated membrane. In addition, the MOF-PDA membrane fabricated by this method showed more uniform and size-controlled AgMOFs on the membrane surface than other conventional methods with large MOF clusters. The AgMOF-functionalized membrane displayed enhanced static antibacterial activity and dynamic biofouling resistance compared to those of the PDA-coated and pristine membranes while in contact with the model bacteria, Escherichia coli and Staphylococcus aureus. These results were evidenced by a larger inhibition zone area, a decline in viable cells observed in static antibacterial experiments, and more retained water flux in dynamic biofouling experiments. Altogether, our findings indicate that the in-situ synthesis of AgMOFs on membrane surfaces was successful by this facile and environmentally friendly method which can be considered in future studies with the purpose of surface modification for diverse applications. [Display omitted] •Ag-MOFs) are in-situ grafted on polydopamine-coated polyvinylidene fluoride membrane using ultrasonication.•AgMOFs are dispersed uniformly with controllable size on the membrane surface.•AgMOF-modified membrane shows remarkable static biocidal activity against E. coli and S. aureus.•AgMOF-modified membrane shows 66 and 23% higher flux than the blank membrane.</description><subject>Antibacterial activities</subject><subject>Biofouling</subject><subject>Green chemistry</subject><subject>Microfiltration</subject><subject>MOF</subject><subject>Surface modification</subject><subject>Ultrasonication</subject><issn>2468-5194</issn><issn>2468-5194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEhX0D1j4B1L8ymuDVFW8pEpsYG2N7UnrksSV7RbxEfwzKWHBitXMvdK9MzpZdsPoglFW3u4WfTJb7Beccn6yqJRn2YzLss4L1sjzP_tlNo9xRynllAlZlLPsazmQQ5cCRD84k0OMLia0JMDeWQL7ffBgtqT1gcRDTOAG0B2SFnRwBpLzA_EtgSE5DSZhcNCNyv44uXa-9YfODRvSY68DDBjJ0cGoEnS5DxsYj5I2QI8fPrzH6-yihS7i_HdeZW8P96-rp3z98vi8Wq5zIwqe8qYstLFoZV2BlS3WknJW1wJ1KaumgULwiqEAkJUQhbSVFlQgNtawRteCiatMTr0m-BgDtmofXA_hUzGqTlTVTk1U1YmqmqiOsbsphuNvR4dBReNwMGhdQJOU9e7_gm-GE4Xf</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zolghadr, E.</creator><creator>Dadashi Firouzjaei, M.</creator><creator>Aghapour Aktij, S.</creator><creator>Aghaei, A.</creator><creator>Wujcik, E.K.</creator><creator>Sadrzadeh, M.</creator><creator>Rahimpour, A.</creator><creator>Afkhami, F.A.</creator><creator>LeClair, P.</creator><creator>Elliott, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4134-2608</orcidid><orcidid>https://orcid.org/0000-0002-5186-8614</orcidid><orcidid>https://orcid.org/0000-0001-5977-8480</orcidid><orcidid>https://orcid.org/0000-0002-7802-2686</orcidid><orcidid>https://orcid.org/0000-0002-0403-8351</orcidid><orcidid>https://orcid.org/0000-0002-0215-8210</orcidid><orcidid>https://orcid.org/0000-0002-4966-863X</orcidid><orcidid>https://orcid.org/0000-0003-1511-2761</orcidid></search><sort><creationdate>202212</creationdate><title>An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks</title><author>Zolghadr, E. ; Dadashi Firouzjaei, M. ; Aghapour Aktij, S. ; Aghaei, A. ; Wujcik, E.K. ; Sadrzadeh, M. ; Rahimpour, A. ; Afkhami, F.A. ; LeClair, P. ; Elliott, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibacterial activities</topic><topic>Biofouling</topic><topic>Green chemistry</topic><topic>Microfiltration</topic><topic>MOF</topic><topic>Surface modification</topic><topic>Ultrasonication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zolghadr, E.</creatorcontrib><creatorcontrib>Dadashi Firouzjaei, M.</creatorcontrib><creatorcontrib>Aghapour Aktij, S.</creatorcontrib><creatorcontrib>Aghaei, A.</creatorcontrib><creatorcontrib>Wujcik, E.K.</creatorcontrib><creatorcontrib>Sadrzadeh, M.</creatorcontrib><creatorcontrib>Rahimpour, A.</creatorcontrib><creatorcontrib>Afkhami, F.A.</creatorcontrib><creatorcontrib>LeClair, P.</creatorcontrib><creatorcontrib>Elliott, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials today chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zolghadr, E.</au><au>Dadashi Firouzjaei, M.</au><au>Aghapour Aktij, S.</au><au>Aghaei, A.</au><au>Wujcik, E.K.</au><au>Sadrzadeh, M.</au><au>Rahimpour, A.</au><au>Afkhami, F.A.</au><au>LeClair, P.</au><au>Elliott, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks</atitle><jtitle>Materials today chemistry</jtitle><date>2022-12</date><risdate>2022</risdate><volume>26</volume><spage>101044</spage><pages>101044-</pages><artnum>101044</artnum><issn>2468-5194</issn><eissn>2468-5194</eissn><abstract>Biofouling is a pivotal problem for polymeric membranes used in water treatment and reuse. Surface functionalization is a promising practice to improve the resistance of membranes to biofouling. Diverse materials, synthesis methods, and functionalization techniques will be needed to address different applications. Herein, we employed a novel ultrasonic-assisted technique to functionalize polyvinylidene fluoride microfiltration membranes by silver-based metal-organic frameworks (AgMOFs). Polydopamine (PDA) coating was also used to carry out this surface modification. In this study, AgMOFs were synthesized and in-situ grafted on the membrane surface simultaneously using ultrasonication for the first time. Unlike the conventional methods in which AgMOFs are prone to be washed away, the AgMOFs synthesized by ultrasonic-assisted method strongly bonded with the PDA-coated membrane. In addition, the MOF-PDA membrane fabricated by this method showed more uniform and size-controlled AgMOFs on the membrane surface than other conventional methods with large MOF clusters. The AgMOF-functionalized membrane displayed enhanced static antibacterial activity and dynamic biofouling resistance compared to those of the PDA-coated and pristine membranes while in contact with the model bacteria, Escherichia coli and Staphylococcus aureus. These results were evidenced by a larger inhibition zone area, a decline in viable cells observed in static antibacterial experiments, and more retained water flux in dynamic biofouling experiments. Altogether, our findings indicate that the in-situ synthesis of AgMOFs on membrane surfaces was successful by this facile and environmentally friendly method which can be considered in future studies with the purpose of surface modification for diverse applications. [Display omitted] •Ag-MOFs) are in-situ grafted on polydopamine-coated polyvinylidene fluoride membrane using ultrasonication.•AgMOFs are dispersed uniformly with controllable size on the membrane surface.•AgMOF-modified membrane shows remarkable static biocidal activity against E. coli and S. aureus.•AgMOF-modified membrane shows 66 and 23% higher flux than the blank membrane.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtchem.2022.101044</doi><orcidid>https://orcid.org/0000-0003-4134-2608</orcidid><orcidid>https://orcid.org/0000-0002-5186-8614</orcidid><orcidid>https://orcid.org/0000-0001-5977-8480</orcidid><orcidid>https://orcid.org/0000-0002-7802-2686</orcidid><orcidid>https://orcid.org/0000-0002-0403-8351</orcidid><orcidid>https://orcid.org/0000-0002-0215-8210</orcidid><orcidid>https://orcid.org/0000-0002-4966-863X</orcidid><orcidid>https://orcid.org/0000-0003-1511-2761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-5194
ispartof Materials today chemistry, 2022-12, Vol.26, p.101044, Article 101044
issn 2468-5194
2468-5194
language eng
recordid cdi_crossref_primary_10_1016_j_mtchem_2022_101044
source ScienceDirect Journals
subjects Antibacterial activities
Biofouling
Green chemistry
Microfiltration
MOF
Surface modification
Ultrasonication
title An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultrasonic-assisted%20rapid%20approach%20for%20sustainable%20fabrication%20of%20antibacterial%20and%20anti-biofouling%20membranes%20via%20metal-organic%20frameworks&rft.jtitle=Materials%20today%20chemistry&rft.au=Zolghadr,%20E.&rft.date=2022-12&rft.volume=26&rft.spage=101044&rft.pages=101044-&rft.artnum=101044&rft.issn=2468-5194&rft.eissn=2468-5194&rft_id=info:doi/10.1016/j.mtchem.2022.101044&rft_dat=%3Celsevier_cross%3ES2468519422002737%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-965bcded487ad4fe84021883eb64799a53271e3aa473354d7b303ee9dc19b8313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true