Loading…

Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials

Over the years copper(II) oxide or cupric oxide (CuO) and copper(I) oxide or cuprous oxide (Cu2O) nanoparticles have generated a great deal of interest in scientific studies. CuO and Cu2O nanoparticles have been created using a variety of processes, including electrodeposition, metallic sputtering,...

Full description

Saved in:
Bibliographic Details
Published in:Materials today chemistry 2023-06, Vol.30, p.101513, Article 101513
Main Authors: Okoye, P.C., Azi, S.O., Qahtan, T.F., Owolabi, T.O., Saleh, T.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3
cites cdi_FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3
container_end_page
container_issue
container_start_page 101513
container_title Materials today chemistry
container_volume 30
creator Okoye, P.C.
Azi, S.O.
Qahtan, T.F.
Owolabi, T.O.
Saleh, T.A.
description Over the years copper(II) oxide or cupric oxide (CuO) and copper(I) oxide or cuprous oxide (Cu2O) nanoparticles have generated a great deal of interest in scientific studies. CuO and Cu2O nanoparticles have been created using a variety of processes, including electrodeposition, metallic sputtering, hydrothermal, thermal decomposition, reactive radio frequency magnetron sputtering method, wet chemical, aqueous precipitation, co-precipitation, successiveioniclayeradsorption andreaction method, combustion method, reactive magnetron sputtering, and spray pyrolysis. This review discusses how the synthesis methods affect the nanomaterials' sizes, morphologies, and shapes. The conditions and methods employed to create the CuO and Cu2O nanoparticles directly affect how they behave. CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities. Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures. CuO and CuO:Zn nanoparticles have the potential to be employed as antibacterial agents in biotechnological and agricultural fields, and the utilization of CuO spindles as photocatalysts for industrial wastewater treatment is possible. High-performance glucose sensors use CuO nanoparticles. The bandgap of optimized Cu2O films is 2.34 eV, making them suitable for solar cell applications. Although, solar cell applications can use thicker films, charge transfer applications are best served by thinner films with a thickness of less than 100 nm. A Cu2O film can be used as a substrate layer for semiconductor thin films made using the chemical bath deposition process as well as an electrochromic material to boost the adherence of the second layer to glass substrates. •Conditions and methods employed to create CuO and Cu2O nanoparticles directly affect how they behave.•CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities.•Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures.
doi_str_mv 10.1016/j.mtchem.2023.101513
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtchem_2023_101513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468519423001404</els_id><sourcerecordid>S2468519423001404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFhjR_0IM_oE71tn0pFNMXBHJoS49CltZEIZaNpBTy97XjHnrqaWZ3doZlELoleE0wkff7dZfMDro1xZRNK0HYBVpQLstckIpf_uHXaBXjHmNMMWFcyAX6ej_5tIPo4l02hH6AkByMXHub6WE4OKOT633M-jazo2zPytHPvD5uz3N9pNvMa993OkFw-hBv0FU7Aqx-cYk-n58-6td8s315qx83uWFYppzrxhJTSWqBEa7BlEyTAkQjbCEryRvWFLwoRWmqgjQaaFOMN0JKriXGxLIl4nOuCX2MAVo1BNfpcFIEq6kftVdzP2rqR839jLaH2Qbjb98OgorGgTdgXQCTlO3d_wE_9rNwLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Okoye, P.C. ; Azi, S.O. ; Qahtan, T.F. ; Owolabi, T.O. ; Saleh, T.A.</creator><creatorcontrib>Okoye, P.C. ; Azi, S.O. ; Qahtan, T.F. ; Owolabi, T.O. ; Saleh, T.A.</creatorcontrib><description>Over the years copper(II) oxide or cupric oxide (CuO) and copper(I) oxide or cuprous oxide (Cu2O) nanoparticles have generated a great deal of interest in scientific studies. CuO and Cu2O nanoparticles have been created using a variety of processes, including electrodeposition, metallic sputtering, hydrothermal, thermal decomposition, reactive radio frequency magnetron sputtering method, wet chemical, aqueous precipitation, co-precipitation, successiveioniclayeradsorption andreaction method, combustion method, reactive magnetron sputtering, and spray pyrolysis. This review discusses how the synthesis methods affect the nanomaterials' sizes, morphologies, and shapes. The conditions and methods employed to create the CuO and Cu2O nanoparticles directly affect how they behave. CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities. Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures. CuO and CuO:Zn nanoparticles have the potential to be employed as antibacterial agents in biotechnological and agricultural fields, and the utilization of CuO spindles as photocatalysts for industrial wastewater treatment is possible. High-performance glucose sensors use CuO nanoparticles. The bandgap of optimized Cu2O films is 2.34 eV, making them suitable for solar cell applications. Although, solar cell applications can use thicker films, charge transfer applications are best served by thinner films with a thickness of less than 100 nm. A Cu2O film can be used as a substrate layer for semiconductor thin films made using the chemical bath deposition process as well as an electrochromic material to boost the adherence of the second layer to glass substrates. •Conditions and methods employed to create CuO and Cu2O nanoparticles directly affect how they behave.•CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities.•Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures.</description><identifier>ISSN: 2468-5194</identifier><identifier>EISSN: 2468-5194</identifier><identifier>DOI: 10.1016/j.mtchem.2023.101513</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemistry ; Electronics ; Engineering ; Environment and ecology ; Materials science ; Nanomaterials ; Technology</subject><ispartof>Materials today chemistry, 2023-06, Vol.30, p.101513, Article 101513</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3</citedby><cites>FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Okoye, P.C.</creatorcontrib><creatorcontrib>Azi, S.O.</creatorcontrib><creatorcontrib>Qahtan, T.F.</creatorcontrib><creatorcontrib>Owolabi, T.O.</creatorcontrib><creatorcontrib>Saleh, T.A.</creatorcontrib><title>Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials</title><title>Materials today chemistry</title><description>Over the years copper(II) oxide or cupric oxide (CuO) and copper(I) oxide or cuprous oxide (Cu2O) nanoparticles have generated a great deal of interest in scientific studies. CuO and Cu2O nanoparticles have been created using a variety of processes, including electrodeposition, metallic sputtering, hydrothermal, thermal decomposition, reactive radio frequency magnetron sputtering method, wet chemical, aqueous precipitation, co-precipitation, successiveioniclayeradsorption andreaction method, combustion method, reactive magnetron sputtering, and spray pyrolysis. This review discusses how the synthesis methods affect the nanomaterials' sizes, morphologies, and shapes. The conditions and methods employed to create the CuO and Cu2O nanoparticles directly affect how they behave. CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities. Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures. CuO and CuO:Zn nanoparticles have the potential to be employed as antibacterial agents in biotechnological and agricultural fields, and the utilization of CuO spindles as photocatalysts for industrial wastewater treatment is possible. High-performance glucose sensors use CuO nanoparticles. The bandgap of optimized Cu2O films is 2.34 eV, making them suitable for solar cell applications. Although, solar cell applications can use thicker films, charge transfer applications are best served by thinner films with a thickness of less than 100 nm. A Cu2O film can be used as a substrate layer for semiconductor thin films made using the chemical bath deposition process as well as an electrochromic material to boost the adherence of the second layer to glass substrates. •Conditions and methods employed to create CuO and Cu2O nanoparticles directly affect how they behave.•CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities.•Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures.</description><subject>Chemistry</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Environment and ecology</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Technology</subject><issn>2468-5194</issn><issn>2468-5194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFhjR_0IM_oE71tn0pFNMXBHJoS49CltZEIZaNpBTy97XjHnrqaWZ3doZlELoleE0wkff7dZfMDro1xZRNK0HYBVpQLstckIpf_uHXaBXjHmNMMWFcyAX6ej_5tIPo4l02hH6AkByMXHub6WE4OKOT633M-jazo2zPytHPvD5uz3N9pNvMa993OkFw-hBv0FU7Aqx-cYk-n58-6td8s315qx83uWFYppzrxhJTSWqBEa7BlEyTAkQjbCEryRvWFLwoRWmqgjQaaFOMN0JKriXGxLIl4nOuCX2MAVo1BNfpcFIEq6kftVdzP2rqR839jLaH2Qbjb98OgorGgTdgXQCTlO3d_wE_9rNwLQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Okoye, P.C.</creator><creator>Azi, S.O.</creator><creator>Qahtan, T.F.</creator><creator>Owolabi, T.O.</creator><creator>Saleh, T.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials</title><author>Okoye, P.C. ; Azi, S.O. ; Qahtan, T.F. ; Owolabi, T.O. ; Saleh, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Environment and ecology</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okoye, P.C.</creatorcontrib><creatorcontrib>Azi, S.O.</creatorcontrib><creatorcontrib>Qahtan, T.F.</creatorcontrib><creatorcontrib>Owolabi, T.O.</creatorcontrib><creatorcontrib>Saleh, T.A.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials today chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okoye, P.C.</au><au>Azi, S.O.</au><au>Qahtan, T.F.</au><au>Owolabi, T.O.</au><au>Saleh, T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials</atitle><jtitle>Materials today chemistry</jtitle><date>2023-06</date><risdate>2023</risdate><volume>30</volume><spage>101513</spage><pages>101513-</pages><artnum>101513</artnum><issn>2468-5194</issn><eissn>2468-5194</eissn><abstract>Over the years copper(II) oxide or cupric oxide (CuO) and copper(I) oxide or cuprous oxide (Cu2O) nanoparticles have generated a great deal of interest in scientific studies. CuO and Cu2O nanoparticles have been created using a variety of processes, including electrodeposition, metallic sputtering, hydrothermal, thermal decomposition, reactive radio frequency magnetron sputtering method, wet chemical, aqueous precipitation, co-precipitation, successiveioniclayeradsorption andreaction method, combustion method, reactive magnetron sputtering, and spray pyrolysis. This review discusses how the synthesis methods affect the nanomaterials' sizes, morphologies, and shapes. The conditions and methods employed to create the CuO and Cu2O nanoparticles directly affect how they behave. CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities. Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures. CuO and CuO:Zn nanoparticles have the potential to be employed as antibacterial agents in biotechnological and agricultural fields, and the utilization of CuO spindles as photocatalysts for industrial wastewater treatment is possible. High-performance glucose sensors use CuO nanoparticles. The bandgap of optimized Cu2O films is 2.34 eV, making them suitable for solar cell applications. Although, solar cell applications can use thicker films, charge transfer applications are best served by thinner films with a thickness of less than 100 nm. A Cu2O film can be used as a substrate layer for semiconductor thin films made using the chemical bath deposition process as well as an electrochromic material to boost the adherence of the second layer to glass substrates. •Conditions and methods employed to create CuO and Cu2O nanoparticles directly affect how they behave.•CuO nanoparticles have exceptional antibacterial, antioxidant, and dye degradation photocatalytic capabilities.•Compared to gram-positive bacteria, gram-negative bacteria can be eliminated more quickly by green CuO nanostructures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtchem.2023.101513</doi></addata></record>
fulltext fulltext
identifier ISSN: 2468-5194
ispartof Materials today chemistry, 2023-06, Vol.30, p.101513, Article 101513
issn 2468-5194
2468-5194
language eng
recordid cdi_crossref_primary_10_1016_j_mtchem_2023_101513
source ScienceDirect Freedom Collection 2022-2024
subjects Chemistry
Electronics
Engineering
Environment and ecology
Materials science
Nanomaterials
Technology
title Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20properties,%20and%20applications%20of%20doped%20and%20undoped%20CuO%20and%20Cu2O%20nanomaterials&rft.jtitle=Materials%20today%20chemistry&rft.au=Okoye,%20P.C.&rft.date=2023-06&rft.volume=30&rft.spage=101513&rft.pages=101513-&rft.artnum=101513&rft.issn=2468-5194&rft.eissn=2468-5194&rft_id=info:doi/10.1016/j.mtchem.2023.101513&rft_dat=%3Celsevier_cross%3ES2468519423001404%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-4abd1c962de314aec83a17e5b5d76964b3b747858c971bae2b7ec85664a6001d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true