Loading…

Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage

In this paper, (0.5–5.0 wt%)Gd/316 L composites were prepared by vacuum arc melting, and the microstructure, thermophysical properties, and neutron shielding properties were analyzed deeply. The results showed that the Gd/316 L composites started solidification in primary ferrite mode and terminated...

Full description

Saved in:
Bibliographic Details
Published in:Materials today communications 2023-12, Vol.37, p.107315, Article 107315
Main Authors: Qi, Zheng-Dong, Yang, Zhong, Meng, Xian-Fang, Yang, Xi-Gang, Liang, Min-Xian, Li, Chang-Yuan, Dai, Ye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3
cites cdi_FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3
container_end_page
container_issue
container_start_page 107315
container_title Materials today communications
container_volume 37
creator Qi, Zheng-Dong
Yang, Zhong
Meng, Xian-Fang
Yang, Xi-Gang
Liang, Min-Xian
Li, Chang-Yuan
Dai, Ye
description In this paper, (0.5–5.0 wt%)Gd/316 L composites were prepared by vacuum arc melting, and the microstructure, thermophysical properties, and neutron shielding properties were analyzed deeply. The results showed that the Gd/316 L composites started solidification in primary ferrite mode and terminated solidification by a peritectic-type reaction forming (Fe, Ni, Cr)3Gd that is rich in Ni and Gd. In the peritectic-type reaction, local convection in the Ni-rich and Gd-rich peritectic liquid phase leads to the formation of multiple variants of (Fe, Ni, Cr)3Gd. The higher the Gd content, the greater the amount of (Fe, Ni, Cr)3Gd and ferrite, and the harder it is to keep the austenitic matrix of 316 L stainless steel. The solidification temperature range of Gd/316 L composites is 1074–1460 °C, which severely limits the ability to further process it by high-temperature deformation techniques such as hot rolling or hot forging. (Fe, Ni, Cr)3Gd preferentially nucleates and grows in the triangular region of austenite grain boundaries at 1074 °C. At 50–500 °C, with increasing Gd content, thermal expansion and thermal diffusion coefficients become decrease, and thermal conductivity and specific heat capacity increase. The trend of thermophysical property changes is favorable for SNF transportation and storage applications. The thermal neutron shielding properties of 1.0 wt%Gd/316 L composite is comparable to that of 4.45 wt% B content boron steel and 15 wt%B4C/Al composite. The Gd content in Gd/316 L composites material should not exceed 2.5 wt%. If the Gd content continues to increase, it is of little significance to improving shielding properties and material thinning. A shielding thickness of 3 mm is more appropriate for Gd/316 L composites. Too thin would not provide sufficient mechanical properties and increase processing and manufacturing costs. [Display omitted]
doi_str_mv 10.1016/j.mtcomm.2023.107315
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtcomm_2023_107315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352492823020068</els_id><sourcerecordid>S2352492823020068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRiMEElXpDVj4ALT1X9J0g4QqKEhFbGBtufa4dZXE0dhB6j04AGfhZKQKi65YzejTfE-jl2W3jM4YZcX8MKuTCXU945SLPloIll9kIy5yPpVLXl6e7dfZJMYDpZSVOZVLOcq-Xr3BEBN2JnUIdyTtAevQ7o_RG12RFkMLmDxEohtLGugShobEvYfK-mZ3fhAcWdu5YMXP94b0L7Uh-tTnLiCJLTSJNJ2pQCNxHVQkoW5iGzDp5HvkCR9TQL2Dm-zK6SrC5G-Os4-nx_fV83Tztn5ZPWymRtAiTR1bAmPclIYWgjq7yCVzUgsopAZBS76E3GppFpYLmbsSpN1aZp1xOd9SbcU4kwP3pCAiONWirzUeFaPqJFcd1CBXneSqQW5fux9q0P_26QFVNB4aA9YjmKRs8P8DfgFSZ4px</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Qi, Zheng-Dong ; Yang, Zhong ; Meng, Xian-Fang ; Yang, Xi-Gang ; Liang, Min-Xian ; Li, Chang-Yuan ; Dai, Ye</creator><creatorcontrib>Qi, Zheng-Dong ; Yang, Zhong ; Meng, Xian-Fang ; Yang, Xi-Gang ; Liang, Min-Xian ; Li, Chang-Yuan ; Dai, Ye</creatorcontrib><description>In this paper, (0.5–5.0 wt%)Gd/316 L composites were prepared by vacuum arc melting, and the microstructure, thermophysical properties, and neutron shielding properties were analyzed deeply. The results showed that the Gd/316 L composites started solidification in primary ferrite mode and terminated solidification by a peritectic-type reaction forming (Fe, Ni, Cr)3Gd that is rich in Ni and Gd. In the peritectic-type reaction, local convection in the Ni-rich and Gd-rich peritectic liquid phase leads to the formation of multiple variants of (Fe, Ni, Cr)3Gd. The higher the Gd content, the greater the amount of (Fe, Ni, Cr)3Gd and ferrite, and the harder it is to keep the austenitic matrix of 316 L stainless steel. The solidification temperature range of Gd/316 L composites is 1074–1460 °C, which severely limits the ability to further process it by high-temperature deformation techniques such as hot rolling or hot forging. (Fe, Ni, Cr)3Gd preferentially nucleates and grows in the triangular region of austenite grain boundaries at 1074 °C. At 50–500 °C, with increasing Gd content, thermal expansion and thermal diffusion coefficients become decrease, and thermal conductivity and specific heat capacity increase. The trend of thermophysical property changes is favorable for SNF transportation and storage applications. The thermal neutron shielding properties of 1.0 wt%Gd/316 L composite is comparable to that of 4.45 wt% B content boron steel and 15 wt%B4C/Al composite. The Gd content in Gd/316 L composites material should not exceed 2.5 wt%. If the Gd content continues to increase, it is of little significance to improving shielding properties and material thinning. A shielding thickness of 3 mm is more appropriate for Gd/316 L composites. Too thin would not provide sufficient mechanical properties and increase processing and manufacturing costs. [Display omitted]</description><identifier>ISSN: 2352-4928</identifier><identifier>EISSN: 2352-4928</identifier><identifier>DOI: 10.1016/j.mtcomm.2023.107315</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cr)3Gd ; Fe ; Gd/316 L composites ; Microstructure ; Neutron shielding material ; Thermophysical properties</subject><ispartof>Materials today communications, 2023-12, Vol.37, p.107315, Article 107315</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3</citedby><cites>FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qi, Zheng-Dong</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Meng, Xian-Fang</creatorcontrib><creatorcontrib>Yang, Xi-Gang</creatorcontrib><creatorcontrib>Liang, Min-Xian</creatorcontrib><creatorcontrib>Li, Chang-Yuan</creatorcontrib><creatorcontrib>Dai, Ye</creatorcontrib><title>Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage</title><title>Materials today communications</title><description>In this paper, (0.5–5.0 wt%)Gd/316 L composites were prepared by vacuum arc melting, and the microstructure, thermophysical properties, and neutron shielding properties were analyzed deeply. The results showed that the Gd/316 L composites started solidification in primary ferrite mode and terminated solidification by a peritectic-type reaction forming (Fe, Ni, Cr)3Gd that is rich in Ni and Gd. In the peritectic-type reaction, local convection in the Ni-rich and Gd-rich peritectic liquid phase leads to the formation of multiple variants of (Fe, Ni, Cr)3Gd. The higher the Gd content, the greater the amount of (Fe, Ni, Cr)3Gd and ferrite, and the harder it is to keep the austenitic matrix of 316 L stainless steel. The solidification temperature range of Gd/316 L composites is 1074–1460 °C, which severely limits the ability to further process it by high-temperature deformation techniques such as hot rolling or hot forging. (Fe, Ni, Cr)3Gd preferentially nucleates and grows in the triangular region of austenite grain boundaries at 1074 °C. At 50–500 °C, with increasing Gd content, thermal expansion and thermal diffusion coefficients become decrease, and thermal conductivity and specific heat capacity increase. The trend of thermophysical property changes is favorable for SNF transportation and storage applications. The thermal neutron shielding properties of 1.0 wt%Gd/316 L composite is comparable to that of 4.45 wt% B content boron steel and 15 wt%B4C/Al composite. The Gd content in Gd/316 L composites material should not exceed 2.5 wt%. If the Gd content continues to increase, it is of little significance to improving shielding properties and material thinning. A shielding thickness of 3 mm is more appropriate for Gd/316 L composites. Too thin would not provide sufficient mechanical properties and increase processing and manufacturing costs. [Display omitted]</description><subject>Cr)3Gd</subject><subject>Fe</subject><subject>Gd/316 L composites</subject><subject>Microstructure</subject><subject>Neutron shielding material</subject><subject>Thermophysical properties</subject><issn>2352-4928</issn><issn>2352-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRiMEElXpDVj4ALT1X9J0g4QqKEhFbGBtufa4dZXE0dhB6j04AGfhZKQKi65YzejTfE-jl2W3jM4YZcX8MKuTCXU945SLPloIll9kIy5yPpVLXl6e7dfZJMYDpZSVOZVLOcq-Xr3BEBN2JnUIdyTtAevQ7o_RG12RFkMLmDxEohtLGugShobEvYfK-mZ3fhAcWdu5YMXP94b0L7Uh-tTnLiCJLTSJNJ2pQCNxHVQkoW5iGzDp5HvkCR9TQL2Dm-zK6SrC5G-Os4-nx_fV83Tztn5ZPWymRtAiTR1bAmPclIYWgjq7yCVzUgsopAZBS76E3GppFpYLmbsSpN1aZp1xOd9SbcU4kwP3pCAiONWirzUeFaPqJFcd1CBXneSqQW5fux9q0P_26QFVNB4aA9YjmKRs8P8DfgFSZ4px</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Qi, Zheng-Dong</creator><creator>Yang, Zhong</creator><creator>Meng, Xian-Fang</creator><creator>Yang, Xi-Gang</creator><creator>Liang, Min-Xian</creator><creator>Li, Chang-Yuan</creator><creator>Dai, Ye</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage</title><author>Qi, Zheng-Dong ; Yang, Zhong ; Meng, Xian-Fang ; Yang, Xi-Gang ; Liang, Min-Xian ; Li, Chang-Yuan ; Dai, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cr)3Gd</topic><topic>Fe</topic><topic>Gd/316 L composites</topic><topic>Microstructure</topic><topic>Neutron shielding material</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Zheng-Dong</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Meng, Xian-Fang</creatorcontrib><creatorcontrib>Yang, Xi-Gang</creatorcontrib><creatorcontrib>Liang, Min-Xian</creatorcontrib><creatorcontrib>Li, Chang-Yuan</creatorcontrib><creatorcontrib>Dai, Ye</creatorcontrib><collection>CrossRef</collection><jtitle>Materials today communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Zheng-Dong</au><au>Yang, Zhong</au><au>Meng, Xian-Fang</au><au>Yang, Xi-Gang</au><au>Liang, Min-Xian</au><au>Li, Chang-Yuan</au><au>Dai, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage</atitle><jtitle>Materials today communications</jtitle><date>2023-12</date><risdate>2023</risdate><volume>37</volume><spage>107315</spage><pages>107315-</pages><artnum>107315</artnum><issn>2352-4928</issn><eissn>2352-4928</eissn><abstract>In this paper, (0.5–5.0 wt%)Gd/316 L composites were prepared by vacuum arc melting, and the microstructure, thermophysical properties, and neutron shielding properties were analyzed deeply. The results showed that the Gd/316 L composites started solidification in primary ferrite mode and terminated solidification by a peritectic-type reaction forming (Fe, Ni, Cr)3Gd that is rich in Ni and Gd. In the peritectic-type reaction, local convection in the Ni-rich and Gd-rich peritectic liquid phase leads to the formation of multiple variants of (Fe, Ni, Cr)3Gd. The higher the Gd content, the greater the amount of (Fe, Ni, Cr)3Gd and ferrite, and the harder it is to keep the austenitic matrix of 316 L stainless steel. The solidification temperature range of Gd/316 L composites is 1074–1460 °C, which severely limits the ability to further process it by high-temperature deformation techniques such as hot rolling or hot forging. (Fe, Ni, Cr)3Gd preferentially nucleates and grows in the triangular region of austenite grain boundaries at 1074 °C. At 50–500 °C, with increasing Gd content, thermal expansion and thermal diffusion coefficients become decrease, and thermal conductivity and specific heat capacity increase. The trend of thermophysical property changes is favorable for SNF transportation and storage applications. The thermal neutron shielding properties of 1.0 wt%Gd/316 L composite is comparable to that of 4.45 wt% B content boron steel and 15 wt%B4C/Al composite. The Gd content in Gd/316 L composites material should not exceed 2.5 wt%. If the Gd content continues to increase, it is of little significance to improving shielding properties and material thinning. A shielding thickness of 3 mm is more appropriate for Gd/316 L composites. Too thin would not provide sufficient mechanical properties and increase processing and manufacturing costs. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtcomm.2023.107315</doi></addata></record>
fulltext fulltext
identifier ISSN: 2352-4928
ispartof Materials today communications, 2023-12, Vol.37, p.107315, Article 107315
issn 2352-4928
2352-4928
language eng
recordid cdi_crossref_primary_10_1016_j_mtcomm_2023_107315
source ScienceDirect Freedom Collection 2022-2024
subjects Cr)3Gd
Fe
Gd/316 L composites
Microstructure
Neutron shielding material
Thermophysical properties
title Microstructure, thermophysical properties and neutron shielding properties of Gd/316 L composites for spent nuclear fuel transportation and storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20thermophysical%20properties%20and%20neutron%20shielding%20properties%20of%20Gd/316%C2%A0L%20composites%20for%20spent%20nuclear%20fuel%20transportation%20and%20storage&rft.jtitle=Materials%20today%20communications&rft.au=Qi,%20Zheng-Dong&rft.date=2023-12&rft.volume=37&rft.spage=107315&rft.pages=107315-&rft.artnum=107315&rft.issn=2352-4928&rft.eissn=2352-4928&rft_id=info:doi/10.1016/j.mtcomm.2023.107315&rft_dat=%3Celsevier_cross%3ES2352492823020068%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-f19e112c8c0630fd7541f4a3e64ae30829e5da4c7d2345f8e4dbd1dfcf52b0ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true