Loading…

Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage

Utilizing ball milling and spray drying, Zr-doped O3-type NaNi1/3Fe1/3-xMn1/3ZrxO2 (NFM-xZr, x=0, 1 %, 3 %) cathode materials were successfully fabricated, confirmed by XRD and EDS analyses, indicating effective Zr4+ ion integration. Structural adjustments in transition metal and sodium layer spacin...

Full description

Saved in:
Bibliographic Details
Published in:Materials today communications 2024-08, Vol.40, p.109552, Article 109552
Main Authors: Zhu, Li-ang, Tian, Jingxiu, Miao, Hongshun, Liu, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-d6c8128e225497c010c8e29aea42c688f7c9e4bab2ab113b20b311d4c35558813
container_end_page
container_issue
container_start_page 109552
container_title Materials today communications
container_volume 40
creator Zhu, Li-ang
Tian, Jingxiu
Miao, Hongshun
Liu, Yan
description Utilizing ball milling and spray drying, Zr-doped O3-type NaNi1/3Fe1/3-xMn1/3ZrxO2 (NFM-xZr, x=0, 1 %, 3 %) cathode materials were successfully fabricated, confirmed by XRD and EDS analyses, indicating effective Zr4+ ion integration. Structural adjustments in transition metal and sodium layer spacing were observed, enhancing sodium ion diffusion. The optimal sample, NFM-1 %Zr, exhibited remarkable electrochemical performance, achieving a discharge capacity of 124.4mAhg−1 at 1 C and a retention rate of 87.14 % after 200 cycles. At 5 C, the retention rate remained high at 88.15 % after 200 cycles. Notably, within the voltage range of 2–4.3 V, the capacity retention rate at 1 C increased by 21.94 %. In a full cell configuration (NFM-1 %Zr//HC), a cycling retention rate of 79.78 % was achieved after 200 cycles at 10 C. Ex-situ XRD analysis highlighted the improved cathode material reversibility with Zr incorporation. SEM and EDS revealed that moderate Zr doping inhibited phase transitions and reduced oxygen losses, resulting in excellent electrochemical performance. [Display omitted] •Suitable Zr doping can broaden the interlayer spacing of the sodium layer in NFM samples.•NFM-1 %Zr samples exhibit excellent rate capability and cycle performance in half/full batteries.•Zr doping can effectively inhibit Jahn-Teller effect and enhance the structural stability of materials.•The modification mechanism of Zr doping under high voltage cycling was further elucidated by ex-situ XRD and EDS spectra.
doi_str_mv 10.1016/j.mtcomm.2024.109552
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtcomm_2024_109552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352492824015332</els_id><sourcerecordid>S2352492824015332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-d6c8128e225497c010c8e29aea42c688f7c9e4bab2ab113b20b311d4c35558813</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVNA_4OAfSGs7dptckFBFAam0l3LhYm3sTeuqiSs7VCpfj6Nw4MRlX5oZzQ4hD5xNOOOz6WHSdMY3zUQwIdOpVEpckZHIlchkKYrrP_MtGcd4YIzxQjFZyhH52oI7-oCWxkvb7TG6SKG11OwhgOkwuG_onG-pr-lnyKw_Jega1o5P8yWm8t6mshHUQLf3FmkDPQmOkdY-ULBnaE2iYIthd6Gx8wF2eE9u6gTB8W-_Ix_L5-3iNVttXt4WT6vMJINdZmem4KJAIZQs54ZxZtJSAoIUZlYU9dyUKCuoBFSc55VgVc65lSZXShUFz--IHHRN8DEGrPUpuAbCRXOm-_T0QQ_p6T49PaSXaI8DDZO3s8Ogo3HY_-ECmk5b7_4X-AGqlnow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage</title><source>ScienceDirect Freedom Collection</source><creator>Zhu, Li-ang ; Tian, Jingxiu ; Miao, Hongshun ; Liu, Yan</creator><creatorcontrib>Zhu, Li-ang ; Tian, Jingxiu ; Miao, Hongshun ; Liu, Yan</creatorcontrib><description>Utilizing ball milling and spray drying, Zr-doped O3-type NaNi1/3Fe1/3-xMn1/3ZrxO2 (NFM-xZr, x=0, 1 %, 3 %) cathode materials were successfully fabricated, confirmed by XRD and EDS analyses, indicating effective Zr4+ ion integration. Structural adjustments in transition metal and sodium layer spacing were observed, enhancing sodium ion diffusion. The optimal sample, NFM-1 %Zr, exhibited remarkable electrochemical performance, achieving a discharge capacity of 124.4mAhg−1 at 1 C and a retention rate of 87.14 % after 200 cycles. At 5 C, the retention rate remained high at 88.15 % after 200 cycles. Notably, within the voltage range of 2–4.3 V, the capacity retention rate at 1 C increased by 21.94 %. In a full cell configuration (NFM-1 %Zr//HC), a cycling retention rate of 79.78 % was achieved after 200 cycles at 10 C. Ex-situ XRD analysis highlighted the improved cathode material reversibility with Zr incorporation. SEM and EDS revealed that moderate Zr doping inhibited phase transitions and reduced oxygen losses, resulting in excellent electrochemical performance. [Display omitted] •Suitable Zr doping can broaden the interlayer spacing of the sodium layer in NFM samples.•NFM-1 %Zr samples exhibit excellent rate capability and cycle performance in half/full batteries.•Zr doping can effectively inhibit Jahn-Teller effect and enhance the structural stability of materials.•The modification mechanism of Zr doping under high voltage cycling was further elucidated by ex-situ XRD and EDS spectra.</description><identifier>ISSN: 2352-4928</identifier><identifier>EISSN: 2352-4928</identifier><identifier>DOI: 10.1016/j.mtcomm.2024.109552</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ball milling ; Full-cell ; Reversibility ; Structural evolution ; Zr-doped</subject><ispartof>Materials today communications, 2024-08, Vol.40, p.109552, Article 109552</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-d6c8128e225497c010c8e29aea42c688f7c9e4bab2ab113b20b311d4c35558813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Li-ang</creatorcontrib><creatorcontrib>Tian, Jingxiu</creatorcontrib><creatorcontrib>Miao, Hongshun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage</title><title>Materials today communications</title><description>Utilizing ball milling and spray drying, Zr-doped O3-type NaNi1/3Fe1/3-xMn1/3ZrxO2 (NFM-xZr, x=0, 1 %, 3 %) cathode materials were successfully fabricated, confirmed by XRD and EDS analyses, indicating effective Zr4+ ion integration. Structural adjustments in transition metal and sodium layer spacing were observed, enhancing sodium ion diffusion. The optimal sample, NFM-1 %Zr, exhibited remarkable electrochemical performance, achieving a discharge capacity of 124.4mAhg−1 at 1 C and a retention rate of 87.14 % after 200 cycles. At 5 C, the retention rate remained high at 88.15 % after 200 cycles. Notably, within the voltage range of 2–4.3 V, the capacity retention rate at 1 C increased by 21.94 %. In a full cell configuration (NFM-1 %Zr//HC), a cycling retention rate of 79.78 % was achieved after 200 cycles at 10 C. Ex-situ XRD analysis highlighted the improved cathode material reversibility with Zr incorporation. SEM and EDS revealed that moderate Zr doping inhibited phase transitions and reduced oxygen losses, resulting in excellent electrochemical performance. [Display omitted] •Suitable Zr doping can broaden the interlayer spacing of the sodium layer in NFM samples.•NFM-1 %Zr samples exhibit excellent rate capability and cycle performance in half/full batteries.•Zr doping can effectively inhibit Jahn-Teller effect and enhance the structural stability of materials.•The modification mechanism of Zr doping under high voltage cycling was further elucidated by ex-situ XRD and EDS spectra.</description><subject>Ball milling</subject><subject>Full-cell</subject><subject>Reversibility</subject><subject>Structural evolution</subject><subject>Zr-doped</subject><issn>2352-4928</issn><issn>2352-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVNA_4OAfSGs7dptckFBFAam0l3LhYm3sTeuqiSs7VCpfj6Nw4MRlX5oZzQ4hD5xNOOOz6WHSdMY3zUQwIdOpVEpckZHIlchkKYrrP_MtGcd4YIzxQjFZyhH52oI7-oCWxkvb7TG6SKG11OwhgOkwuG_onG-pr-lnyKw_Jega1o5P8yWm8t6mshHUQLf3FmkDPQmOkdY-ULBnaE2iYIthd6Gx8wF2eE9u6gTB8W-_Ix_L5-3iNVttXt4WT6vMJINdZmem4KJAIZQs54ZxZtJSAoIUZlYU9dyUKCuoBFSc55VgVc65lSZXShUFz--IHHRN8DEGrPUpuAbCRXOm-_T0QQ_p6T49PaSXaI8DDZO3s8Ogo3HY_-ECmk5b7_4X-AGqlnow</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zhu, Li-ang</creator><creator>Tian, Jingxiu</creator><creator>Miao, Hongshun</creator><creator>Liu, Yan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202408</creationdate><title>Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage</title><author>Zhu, Li-ang ; Tian, Jingxiu ; Miao, Hongshun ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-d6c8128e225497c010c8e29aea42c688f7c9e4bab2ab113b20b311d4c35558813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ball milling</topic><topic>Full-cell</topic><topic>Reversibility</topic><topic>Structural evolution</topic><topic>Zr-doped</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Li-ang</creatorcontrib><creatorcontrib>Tian, Jingxiu</creatorcontrib><creatorcontrib>Miao, Hongshun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>CrossRef</collection><jtitle>Materials today communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Li-ang</au><au>Tian, Jingxiu</au><au>Miao, Hongshun</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage</atitle><jtitle>Materials today communications</jtitle><date>2024-08</date><risdate>2024</risdate><volume>40</volume><spage>109552</spage><pages>109552-</pages><artnum>109552</artnum><issn>2352-4928</issn><eissn>2352-4928</eissn><abstract>Utilizing ball milling and spray drying, Zr-doped O3-type NaNi1/3Fe1/3-xMn1/3ZrxO2 (NFM-xZr, x=0, 1 %, 3 %) cathode materials were successfully fabricated, confirmed by XRD and EDS analyses, indicating effective Zr4+ ion integration. Structural adjustments in transition metal and sodium layer spacing were observed, enhancing sodium ion diffusion. The optimal sample, NFM-1 %Zr, exhibited remarkable electrochemical performance, achieving a discharge capacity of 124.4mAhg−1 at 1 C and a retention rate of 87.14 % after 200 cycles. At 5 C, the retention rate remained high at 88.15 % after 200 cycles. Notably, within the voltage range of 2–4.3 V, the capacity retention rate at 1 C increased by 21.94 %. In a full cell configuration (NFM-1 %Zr//HC), a cycling retention rate of 79.78 % was achieved after 200 cycles at 10 C. Ex-situ XRD analysis highlighted the improved cathode material reversibility with Zr incorporation. SEM and EDS revealed that moderate Zr doping inhibited phase transitions and reduced oxygen losses, resulting in excellent electrochemical performance. [Display omitted] •Suitable Zr doping can broaden the interlayer spacing of the sodium layer in NFM samples.•NFM-1 %Zr samples exhibit excellent rate capability and cycle performance in half/full batteries.•Zr doping can effectively inhibit Jahn-Teller effect and enhance the structural stability of materials.•The modification mechanism of Zr doping under high voltage cycling was further elucidated by ex-situ XRD and EDS spectra.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtcomm.2024.109552</doi></addata></record>
fulltext fulltext
identifier ISSN: 2352-4928
ispartof Materials today communications, 2024-08, Vol.40, p.109552, Article 109552
issn 2352-4928
2352-4928
language eng
recordid cdi_crossref_primary_10_1016_j_mtcomm_2024_109552
source ScienceDirect Freedom Collection
subjects Ball milling
Full-cell
Reversibility
Structural evolution
Zr-doped
title Tailored synthesis and characterization of Zr-doped NaNi1/3Fe1/3Mn1/3O2 cathode materials for advanced energy storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20synthesis%20and%20characterization%20of%20Zr-doped%20NaNi1/3Fe1/3Mn1/3O2%20cathode%20materials%20for%20advanced%20energy%20storage&rft.jtitle=Materials%20today%20communications&rft.au=Zhu,%20Li-ang&rft.date=2024-08&rft.volume=40&rft.spage=109552&rft.pages=109552-&rft.artnum=109552&rft.issn=2352-4928&rft.eissn=2352-4928&rft_id=info:doi/10.1016/j.mtcomm.2024.109552&rft_dat=%3Celsevier_cross%3ES2352492824015332%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-d6c8128e225497c010c8e29aea42c688f7c9e4bab2ab113b20b311d4c35558813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true