Loading…

Study on the charge transport behaviour of mxene- polymer nanocomposite-based self-assembled floating films at the air-liquid interface

This study explores the fabrication and charge transport behavior of MXene-polymer nanocomposite-based self-assembled floating films at the air-liquid interface. Utilizing ultrasonic dispersion of MXene nanosheets was integrated into a DPP-TTT polymer matrix, significantly enhancing the alignment an...

Full description

Saved in:
Bibliographic Details
Published in:Materials Today Electronics 2024-09, Vol.9, p.100112, Article 100112
Main Authors: Shyam, Radhe, Sharma, Shubham, Pandey, Shyam S., Manaka, Takaaki, Prakash, Rajiv
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the fabrication and charge transport behavior of MXene-polymer nanocomposite-based self-assembled floating films at the air-liquid interface. Utilizing ultrasonic dispersion of MXene nanosheets was integrated into a DPP-TTT polymer matrix, significantly enhancing the alignment and crystallization of the polymer chains. The films were fabricated using a unidirectional floating film transfer method (UFTM), which proved to be both simple and cost-effective. UV–visible and grazing incidence X-ray diffraction (GIXD) analyses confirmed increased π–π stacking and improved structural arrangement within the nanocomposites. Organic field-effect transistors (OFETs) fabricated from these films demonstrated that a 3% MXene inclusion resulted in the highest mobility, measuring 3.1 cm2V-1s-1 with an on-off ratio in the order of 104, compared to 1.3 cm2V-1s-1 in pristine DPP-TTT films. However, further increases in MXene content reduced mobility, emphasizing the importance of precise compositional tuning. [Display omitted]
ISSN:2772-9494
2772-9494
DOI:10.1016/j.mtelec.2024.100112