Loading…
Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example
Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grai...
Saved in:
Published in: | Materialia 2021-12, Vol.20, p.101236, Article 101236 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33 |
container_end_page | |
container_issue | |
container_start_page | 101236 |
container_title | Materialia |
container_volume | 20 |
creator | Aota, Leonardo Shoji Bajaj, Priyanshu Zilnyk, Kahl Dick Jägle, Eric Aime Ponge, Dirk Sandim, Hugo Ricardo Zschommler Raabe, Dierk |
description | Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure.
[Display omitted] |
doi_str_mv | 10.1016/j.mtla.2021.101236 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtla_2021_101236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589152921002398</els_id><sourcerecordid>S2589152921002398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7DyB5DiV0KD2FQVlEqVkHisLceegIsTR3Z4hD_gr3FUFqxYzdVozp2Zi9ApJXNKaHG-mze9U3NGGB0bjBcHaMLyRZnRnJWHf_QxmsW4IyRNCiEWYoK-70GHIfbKOfuleutb_Gpb6K2OZ7gB_aJaG5ukVWtw7zvv_POAbYsT4IeIu-A1xAgGVwN2KkLAnf8wELIq9eq3mBwv8XLzsMGcFlucNtnWJSIpAIdVxPCpms7BCTqqlYsw-61T9HRz_bi6zbZ3681quc00J6TPQECpawOcV3xh-IUWvKgYN0wQzYjRVSVyxbWBIr1Y85LlLNecspLmhtGETRHb--rgYwxQyy7YRoVBUiLHPOVOjnnKMU-5zzNBV3sI0mXvFoKM2kKrwdgAupfG2__wHyR8gEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</creator><creatorcontrib>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</creatorcontrib><description>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure.
[Display omitted]</description><identifier>ISSN: 2589-1529</identifier><identifier>EISSN: 2589-1529</identifier><identifier>DOI: 10.1016/j.mtla.2021.101236</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additive manufacturing ; Laser powder-bed fusion ; Microstructural path method ; Non-uniform microstructure ; Recrystallization</subject><ispartof>Materialia, 2021-12, Vol.20, p.101236, Article 101236</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</citedby><cites>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</cites><orcidid>0000-0002-1520-2073 ; 0000-0002-9591-4424 ; 0000-0003-1752-7792 ; 0000-0002-3933-9883 ; 0000-0003-0194-6124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Aota, Leonardo Shoji</creatorcontrib><creatorcontrib>Bajaj, Priyanshu</creatorcontrib><creatorcontrib>Zilnyk, Kahl Dick</creatorcontrib><creatorcontrib>Jägle, Eric Aime</creatorcontrib><creatorcontrib>Ponge, Dirk</creatorcontrib><creatorcontrib>Sandim, Hugo Ricardo Zschommler</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><title>Materialia</title><description>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure.
[Display omitted]</description><subject>Additive manufacturing</subject><subject>Laser powder-bed fusion</subject><subject>Microstructural path method</subject><subject>Non-uniform microstructure</subject><subject>Recrystallization</subject><issn>2589-1529</issn><issn>2589-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7DyB5DiV0KD2FQVlEqVkHisLceegIsTR3Z4hD_gr3FUFqxYzdVozp2Zi9ApJXNKaHG-mze9U3NGGB0bjBcHaMLyRZnRnJWHf_QxmsW4IyRNCiEWYoK-70GHIfbKOfuleutb_Gpb6K2OZ7gB_aJaG5ukVWtw7zvv_POAbYsT4IeIu-A1xAgGVwN2KkLAnf8wELIq9eq3mBwv8XLzsMGcFlucNtnWJSIpAIdVxPCpms7BCTqqlYsw-61T9HRz_bi6zbZ3681quc00J6TPQECpawOcV3xh-IUWvKgYN0wQzYjRVSVyxbWBIr1Y85LlLNecspLmhtGETRHb--rgYwxQyy7YRoVBUiLHPOVOjnnKMU-5zzNBV3sI0mXvFoKM2kKrwdgAupfG2__wHyR8gEk</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Aota, Leonardo Shoji</creator><creator>Bajaj, Priyanshu</creator><creator>Zilnyk, Kahl Dick</creator><creator>Jägle, Eric Aime</creator><creator>Ponge, Dirk</creator><creator>Sandim, Hugo Ricardo Zschommler</creator><creator>Raabe, Dierk</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1520-2073</orcidid><orcidid>https://orcid.org/0000-0002-9591-4424</orcidid><orcidid>https://orcid.org/0000-0003-1752-7792</orcidid><orcidid>https://orcid.org/0000-0002-3933-9883</orcidid><orcidid>https://orcid.org/0000-0003-0194-6124</orcidid></search><sort><creationdate>202112</creationdate><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><author>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Laser powder-bed fusion</topic><topic>Microstructural path method</topic><topic>Non-uniform microstructure</topic><topic>Recrystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aota, Leonardo Shoji</creatorcontrib><creatorcontrib>Bajaj, Priyanshu</creatorcontrib><creatorcontrib>Zilnyk, Kahl Dick</creatorcontrib><creatorcontrib>Jägle, Eric Aime</creatorcontrib><creatorcontrib>Ponge, Dirk</creatorcontrib><creatorcontrib>Sandim, Hugo Ricardo Zschommler</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><collection>CrossRef</collection><jtitle>Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aota, Leonardo Shoji</au><au>Bajaj, Priyanshu</au><au>Zilnyk, Kahl Dick</au><au>Jägle, Eric Aime</au><au>Ponge, Dirk</au><au>Sandim, Hugo Ricardo Zschommler</au><au>Raabe, Dierk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</atitle><jtitle>Materialia</jtitle><date>2021-12</date><risdate>2021</risdate><volume>20</volume><spage>101236</spage><pages>101236-</pages><artnum>101236</artnum><issn>2589-1529</issn><eissn>2589-1529</eissn><abstract>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mtla.2021.101236</doi><orcidid>https://orcid.org/0000-0002-1520-2073</orcidid><orcidid>https://orcid.org/0000-0002-9591-4424</orcidid><orcidid>https://orcid.org/0000-0003-1752-7792</orcidid><orcidid>https://orcid.org/0000-0002-3933-9883</orcidid><orcidid>https://orcid.org/0000-0003-0194-6124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-1529 |
ispartof | Materialia, 2021-12, Vol.20, p.101236, Article 101236 |
issn | 2589-1529 2589-1529 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_mtla_2021_101236 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Additive manufacturing Laser powder-bed fusion Microstructural path method Non-uniform microstructure Recrystallization |
title | Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recrystallization%20kinetics,%20mechanisms,%20and%20topology%20in%20alloys%20processed%20by%20laser%20powder-bed%20fusion:%20AISI%20316L%20stainless%20steel%20as%20example&rft.jtitle=Materialia&rft.au=Aota,%20Leonardo%20Shoji&rft.date=2021-12&rft.volume=20&rft.spage=101236&rft.pages=101236-&rft.artnum=101236&rft.issn=2589-1529&rft.eissn=2589-1529&rft_id=info:doi/10.1016/j.mtla.2021.101236&rft_dat=%3Celsevier_cross%3ES2589152921002398%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |