Loading…

Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example

Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grai...

Full description

Saved in:
Bibliographic Details
Published in:Materialia 2021-12, Vol.20, p.101236, Article 101236
Main Authors: Aota, Leonardo Shoji, Bajaj, Priyanshu, Zilnyk, Kahl Dick, Jägle, Eric Aime, Ponge, Dirk, Sandim, Hugo Ricardo Zschommler, Raabe, Dierk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33
cites cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33
container_end_page
container_issue
container_start_page 101236
container_title Materialia
container_volume 20
creator Aota, Leonardo Shoji
Bajaj, Priyanshu
Zilnyk, Kahl Dick
Jägle, Eric Aime
Ponge, Dirk
Sandim, Hugo Ricardo Zschommler
Raabe, Dierk
description Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure. [Display omitted]
doi_str_mv 10.1016/j.mtla.2021.101236
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_mtla_2021_101236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589152921002398</els_id><sourcerecordid>S2589152921002398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7DyB5DiV0KD2FQVlEqVkHisLceegIsTR3Z4hD_gr3FUFqxYzdVozp2Zi9ApJXNKaHG-mze9U3NGGB0bjBcHaMLyRZnRnJWHf_QxmsW4IyRNCiEWYoK-70GHIfbKOfuleutb_Gpb6K2OZ7gB_aJaG5ukVWtw7zvv_POAbYsT4IeIu-A1xAgGVwN2KkLAnf8wELIq9eq3mBwv8XLzsMGcFlucNtnWJSIpAIdVxPCpms7BCTqqlYsw-61T9HRz_bi6zbZ3681quc00J6TPQECpawOcV3xh-IUWvKgYN0wQzYjRVSVyxbWBIr1Y85LlLNecspLmhtGETRHb--rgYwxQyy7YRoVBUiLHPOVOjnnKMU-5zzNBV3sI0mXvFoKM2kKrwdgAupfG2__wHyR8gEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</creator><creatorcontrib>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</creatorcontrib><description>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure. [Display omitted]</description><identifier>ISSN: 2589-1529</identifier><identifier>EISSN: 2589-1529</identifier><identifier>DOI: 10.1016/j.mtla.2021.101236</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additive manufacturing ; Laser powder-bed fusion ; Microstructural path method ; Non-uniform microstructure ; Recrystallization</subject><ispartof>Materialia, 2021-12, Vol.20, p.101236, Article 101236</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</citedby><cites>FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</cites><orcidid>0000-0002-1520-2073 ; 0000-0002-9591-4424 ; 0000-0003-1752-7792 ; 0000-0002-3933-9883 ; 0000-0003-0194-6124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Aota, Leonardo Shoji</creatorcontrib><creatorcontrib>Bajaj, Priyanshu</creatorcontrib><creatorcontrib>Zilnyk, Kahl Dick</creatorcontrib><creatorcontrib>Jägle, Eric Aime</creatorcontrib><creatorcontrib>Ponge, Dirk</creatorcontrib><creatorcontrib>Sandim, Hugo Ricardo Zschommler</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><title>Materialia</title><description>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure. [Display omitted]</description><subject>Additive manufacturing</subject><subject>Laser powder-bed fusion</subject><subject>Microstructural path method</subject><subject>Non-uniform microstructure</subject><subject>Recrystallization</subject><issn>2589-1529</issn><issn>2589-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7DyB5DiV0KD2FQVlEqVkHisLceegIsTR3Z4hD_gr3FUFqxYzdVozp2Zi9ApJXNKaHG-mze9U3NGGB0bjBcHaMLyRZnRnJWHf_QxmsW4IyRNCiEWYoK-70GHIfbKOfuleutb_Gpb6K2OZ7gB_aJaG5ukVWtw7zvv_POAbYsT4IeIu-A1xAgGVwN2KkLAnf8wELIq9eq3mBwv8XLzsMGcFlucNtnWJSIpAIdVxPCpms7BCTqqlYsw-61T9HRz_bi6zbZ3681quc00J6TPQECpawOcV3xh-IUWvKgYN0wQzYjRVSVyxbWBIr1Y85LlLNecspLmhtGETRHb--rgYwxQyy7YRoVBUiLHPOVOjnnKMU-5zzNBV3sI0mXvFoKM2kKrwdgAupfG2__wHyR8gEk</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Aota, Leonardo Shoji</creator><creator>Bajaj, Priyanshu</creator><creator>Zilnyk, Kahl Dick</creator><creator>Jägle, Eric Aime</creator><creator>Ponge, Dirk</creator><creator>Sandim, Hugo Ricardo Zschommler</creator><creator>Raabe, Dierk</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1520-2073</orcidid><orcidid>https://orcid.org/0000-0002-9591-4424</orcidid><orcidid>https://orcid.org/0000-0003-1752-7792</orcidid><orcidid>https://orcid.org/0000-0002-3933-9883</orcidid><orcidid>https://orcid.org/0000-0003-0194-6124</orcidid></search><sort><creationdate>202112</creationdate><title>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</title><author>Aota, Leonardo Shoji ; Bajaj, Priyanshu ; Zilnyk, Kahl Dick ; Jägle, Eric Aime ; Ponge, Dirk ; Sandim, Hugo Ricardo Zschommler ; Raabe, Dierk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Laser powder-bed fusion</topic><topic>Microstructural path method</topic><topic>Non-uniform microstructure</topic><topic>Recrystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aota, Leonardo Shoji</creatorcontrib><creatorcontrib>Bajaj, Priyanshu</creatorcontrib><creatorcontrib>Zilnyk, Kahl Dick</creatorcontrib><creatorcontrib>Jägle, Eric Aime</creatorcontrib><creatorcontrib>Ponge, Dirk</creatorcontrib><creatorcontrib>Sandim, Hugo Ricardo Zschommler</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><collection>CrossRef</collection><jtitle>Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aota, Leonardo Shoji</au><au>Bajaj, Priyanshu</au><au>Zilnyk, Kahl Dick</au><au>Jägle, Eric Aime</au><au>Ponge, Dirk</au><au>Sandim, Hugo Ricardo Zschommler</au><au>Raabe, Dierk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example</atitle><jtitle>Materialia</jtitle><date>2021-12</date><risdate>2021</risdate><volume>20</volume><spage>101236</spage><pages>101236-</pages><artnum>101236</artnum><issn>2589-1529</issn><eissn>2589-1529</eissn><abstract>Alloys manufactured by laser powder-bed fusion have intrinsic and hierarchical microstructural features inherited from the fast solidification (up to 104 K/s) and subsequent thermal cycles. This creates epitaxed grains, dislocation cell structures, and second-phase oxide nanoparticles. Epitaxed grains follow a pattern where finer grains are found in the melt pool centerline along the laser track. Upon further annealing, this characteristic microstructure has pronounced consequences on the recrystallization mechanisms and thus on grain topology. By changing the scanning strategy, we control the emerging grain patterns in a representative alloy (AISI 316L austenitic stainless steel) by creating linear strings for unidirectional scans, while a chessboard grain pattern arises by applying a 90°-rotation between layers. Upon post-processing annealing (at 1150 °C from 15 min to 8 h), we study the relationship between the as-built and recrystallized microstructures. Recrystallization starts with fine nuclei in regions with high dislocation density along the melt pool centerlines, resulting in early-stage linear impingement (linearly clustered nucleation), as revealed by microstructural path analysis. Recrystallization is sluggish, due to dynamic Zener-Smith pinning. This effect leads to jerky boundary motion due to periodic pinning and depinning from oxide particles, caused by their gradual coarsening. Lower nuclei number density slows kinetics for the case of unidirectional scanning, while twinning aids in the nucleation of grains with mobile grain boundaries. Our findings show that changes in the laser scanning strategy are a suitable design tool for tailoring recrystallization and thus microstructure. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mtla.2021.101236</doi><orcidid>https://orcid.org/0000-0002-1520-2073</orcidid><orcidid>https://orcid.org/0000-0002-9591-4424</orcidid><orcidid>https://orcid.org/0000-0003-1752-7792</orcidid><orcidid>https://orcid.org/0000-0002-3933-9883</orcidid><orcidid>https://orcid.org/0000-0003-0194-6124</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2589-1529
ispartof Materialia, 2021-12, Vol.20, p.101236, Article 101236
issn 2589-1529
2589-1529
language eng
recordid cdi_crossref_primary_10_1016_j_mtla_2021_101236
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Additive manufacturing
Laser powder-bed fusion
Microstructural path method
Non-uniform microstructure
Recrystallization
title Recrystallization kinetics, mechanisms, and topology in alloys processed by laser powder-bed fusion: AISI 316L stainless steel as example
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recrystallization%20kinetics,%20mechanisms,%20and%20topology%20in%20alloys%20processed%20by%20laser%20powder-bed%20fusion:%20AISI%20316L%20stainless%20steel%20as%20example&rft.jtitle=Materialia&rft.au=Aota,%20Leonardo%20Shoji&rft.date=2021-12&rft.volume=20&rft.spage=101236&rft.pages=101236-&rft.artnum=101236&rft.issn=2589-1529&rft.eissn=2589-1529&rft_id=info:doi/10.1016/j.mtla.2021.101236&rft_dat=%3Celsevier_cross%3ES2589152921002398%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-e4e9cfde33b38d37c436b23d240c20dcbb45a3cde6144f392525c312915d21e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true