Loading…
Recent advances in all-solid-state rechargeable lithium batteries
The all-solid-state lithium batteries using solid electrolytes are considered to be the new generation of devices for energy storage. Recent advances in this kind of rechargeable batteries have brought them much closer to a commercial reality. However, several challenges such as insufficient room te...
Saved in:
Published in: | Nano energy 2017-03, Vol.33, p.363-386 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The all-solid-state lithium batteries using solid electrolytes are considered to be the new generation of devices for energy storage. Recent advances in this kind of rechargeable batteries have brought them much closer to a commercial reality. However, several challenges such as insufficient room temperature ionic conductivity (10−5~10−3Scm−1) when compared to those of conventional organic liquid electrolytes (10−2Scm−1), the difficulty in informing an effective electrode-electrolyte interface and insufficient fundamental understanding of the interfacial process after charge/discharge, hindering the reality of such devices. To accelerate the research and development, the overall picture about the current state of all solid-state lithium batteries was reviewed in this article with major focus on the material aspects, including inorganic ceramic and organic solid polymer electrolyte materials. In particular, the importance of the electrolytes and their associated interfaces with electrodes as well as their effects on the battery performance are emphasized by in-depth discussion and data analysis. To overcome the challenges, several possible research directions are also suggested for facilitating further improvement on the battery performance.
The all-solid-state lithium batteries with solid electrolytes are considered to be the new generation of devices for energy storage. To accelerate the research and development, the overall picture about the current state of all solid-state lithium batteries was reviewed in this article with major focus on the material aspects. In particular, the importance of the electrolytes and their associated interfaces with electrodes as well as their effects on the battery performance are emphasized by in-depth discussion and data analysis. To overcome the challenges, several possible research directions are also suggested for facilitating the further improvement on the battery performance. [Display omitted]
•The overall picture about the present all solid-state lithium batteries is reviewed.•The effects of the interface on the battery performance are emphasized.•Several possible research directions are suggested as well. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2017.01.028 |